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C
ancer modeling comes in a wide variety
of styles. Indeed, it can involve almost
any type of applied mathematics. My
personal favorite approach is the use
of probability models to understand

how genetic mutations lead to cancer progression,
metastasis, and resistance to therapy. Ordinary
differential equations can be used to study the
growth of tumor cell populations, often leading
to a conclusion of Gompertzian growth [21].
PDE models using cell densities and nutrient
concentrations as state variables can be used to
analyze various spatiotemporal phenomena; see
[13].

Individual and agent-based models that treat
cells as discrete objects with predefined rules of
interaction can offer an improvement over PDE
methods in some situations, such as the study
of angiogenesis, the development of new blood
vessels to bring nutrients to a growing tumor
[1]. For a comparison of individual-based and
continuum approaches in one particular example,
see [4]. Agent-based systems are one of many
computationally intensive methods [24] and are
often components of multiscale models (see [16],
[6], and [8]).

Rather than spend the entire article in the
land of generalities with random pointers to the
literature, I will next give a description of a useful,
simple, and flexible model: multitype branching
processes. The types represent stages in the cancer
progression. For example, in colon cancer, type 1
cells have one copy of the gene APC inactivated,
type 2 cells have both copies inactivated, type 3
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cells have the KRAS turned on, and type 4 cells
have a mutation in P53. For more on this example,
see the classic paper by Luebeck and Moolgavkar
[17] or Steven Frank’s book [12].

I realize that many readers of this article have
not heard of these three genes. For the purposes of
this article, it is enough to know a few simple facts.
APC is a tumor-suppressor gene. When both copies
are knocked out in a cell, trouble starts. KRAS is
an oncogene. A mutation of one copy changes the
behavior of the cell. In population genetics these
would be called advantageous mutations, but what
is advantageous to a subset of your cells is not
necessarily good for the whole. Finally, P53, which is
named for its 53 Kilo-Dalton size, is a housekeeping
gene that helps keep the cell-replication machinery
running smoothly.

Exactly what these three genes do is not im-
portant. Indeed, in many cases, such as the BRCA
genes, there was a long time interval between
when they were discovered to have a statistically
significant correlation with breast cancer and when
the mechanism that caused this association was
understood. For the branching process model we
are about to describe, the key fact, which is used to
give estimates of the mutation rates ui , is that there
is a fairly specific sequence of mutations that leads
to the disease. Before turning to the mathematical
details of the model, one last thing that should
be said is that this “key fact” is an oversimplifica-
tion. In 20 percent of colon cancers, APC is not
mutated, but the oncogene β-catenin, which is in
the same metabolic pathway as APC, is turned on.
The fact that pathways and not individual genes
are the targets of cancer-causing mutations has
greatly complicated the tumor genome sequencing
approach to understanding the mechanisms of
cancer.
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In multitype branching processes, cells of type
i die at rate bi , give birth to nonmutant offspring
at rate ai , and produce cells of type i + 1 at rate
ui+1. Here the rates are the transition rates of a
continuous time Markov chain; e.g., the probability
a cell gives birth in t units of time is ait + o(t) as
t → 0. Let Zi(t) be the number of cells of type i
at time t . The behavior of the type 0’s has been
known for many years; see, e.g., the classic book
by Athreya and Ney [2]. If λi = ai − bi is the net
growth rate, then the expected number of type 0
at time t is

EZ0(t) = eλ0tZ0(0).
If a0 > b0, then the probability that the type 0’s do
not die out is λ0/a0, and when they do not die out

e−λ0tZ0(t)→ V0 = exponential(a0/λ0).

Here → indicates that with probability one the
sequence of numbers converges.V = exponential(r )
is read “exponential with rate r” and means
P(V > v) = e−rv for v ≥ 0.

Since the types progress 0 → 1 → 2 → . . . , this
process at first seems childishly simple. Breaking
things down according to the time of the mutation
to type 1, the expected number of type 1’s satisfies

EZ1(t) =
∫ t

0
EV0eλ0s · u1 · eλ1(t−s) ds.

The first factor gives the size of the type 0
population at time s, the second the mutation rate,
and the third the number of offspring the mutant
has at time t . However, if 0 < λ0 < λ1, the expected
value EZ1(t) drastically overestimates the number
of type 1’s. The main contribution to the integral
comes from times near 0, but in cancer u1 is very
small (10−5 or less), so, as in the state lottery,
the expected value comes from a rare event that
produces a very large result.

In analyzing the growth of the multitype process,
it is more productive to focus one’s attention on
times at which V0eλ0s ≈ 1/u1 and type 1’s are
being produced at a positive rate. In terms of the
theory of stochastic processes, mutations to type 1
are a nonhomogeneous Poisson process. Using
elementary properties of the Poisson process and
simple computations with Laplace transforms, one
can show that

e−λ1tZ1(t)→ V1 with Ee−θV1 = (1+ cu1θα)−1,

where α = λ0/λ1. This result is more easily
understood (and generalized to types k > 1) if one
conditions on the value of V0.

E(e−θV1|V0) = exp(−cu1V0θα).

See [11] for more details. The right-hand side is
the Laplace transform of a one-sided stable law.
These distributions come up in a typical graduate
course in probability because they are part of the
answer to the question, “What are the possible

limits of normalized sums of independent random
variables (Sn − bn)/an? ”

The appearance of stable laws in this setting is
(at first) somewhat surprising, but as we will see in a
moment, it is very useful in quantifying the relative
frequency of mutations that make up a tumor.
Understanding the amount of tumor heterogeneity
is important for several reasons. Higher levels of
heterogeneity have been correlated with tumor
aggressiveness in a clinical study of Barrett’s
esophagus [19] and is thought to be predictive of
malignant progression in other cancers as well. In
addition, tumor heterogeneity poses challenges
for the development of successful therapies. For
example, increased genetic heterogeneity means
a higher probability that a tumor harbors cells
resistant to treatment. On the other hand, there
are some new therapies that take advantage of
the competition between different types of tumor
cells. See [20] (which is available for free at
PubMedCentral) for an explanation and for more
on the causes and consequences of heterogeneity.

One measure of tumor diversity, Simpson’s
index Rk, can be defined as the probability that
two randomly chosen type k cells are descended
from the same mutation. In genetics this is called
the homozygosity. Using some of the facts about
stable laws that have accumulated over the last
seventy years, one can prove a remarkably simple
result for type k cells:

ERk = 1−αk, where αk = λk−1/λk.

With more work one can compute moments of R
and obtain insights into its distribution. See [10]
for more details.

Two things make these results possible: (i) A
Poisson process representation of the relative con-
tribution of the different mutations to the cancer
cell population, which is the key to identifying the
limits Vi as stable laws. See Figure 1 for a graphical

Figure 1. Tumor heterogeneity in a multitype
branching process. Generalizing the model
discussed in the text, the growth rate of a
mutant is that of its parent plus an amount
uniformly distributed on [0, .05][0, .05][0, .05]. Dots indicate
the growth rate of the mutant and the logarithm
of the number of its descendants at a fixed time.
Note that a half dozen type 1 families are
responsible for most of the population. Figure
by Jasmine Foo.
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display of tumor heterogeneity in a simulation of
a multitype branching process. (ii) Mathematicians
who have done intensive study of Poisson-Dirichlet
distributions, which appear naturally in a wide
variety of topics from the infinite alleles model
in biology to properties of the cycle structure of
randomly chosen permutations. See Pitman’s book
[23] for more details.

An Application to Ovarian Cancer
While it is nice that our multitype branching
processes have a detailed and interesting theory,
it is more important that they are useful in
applications. One simple example comes from
work I did with Duke undergraduate Kaveh Danesh
to answer a question asked by two doctors in
Duke Medical Center’s Department of Obstetrics
and Gynecology. Evan Myers and Laura Havriletsky
wanted to know, “How often should ovarian
cancer screening be done in order to be effective?”
To address this question, we built a multitype
branching process model in which type 0 cells are
in the primary tumor in the ovary or fallopian tube,
type 1 cells are floating in the abdominal cavity,
and type 2 cells are those that have attached to
the peritoneum. Type 2 cells infiltrate the cellular
matrix and eventually metastasize to distant
organs, so when they are present in significant
numbers, the cancer is classified as stage III. Note
that in this model, the transitions from type 0→ 1
and 1 → 2 involve migration of cells, not genetic
mutation.

One of the problems with ovarian cancer is that
many cases are diagnosed in stage III or IV, with
a five-year survival rate of less than 30 percent,
compared to 90 percent for stage I tumors, so
many lives could be saved if they were caught in
stage I, when the cancer has not spread. (Contrary
to intuition, the clinically defined stage II—tumors
in both ovaries/fallopian tubes—often does not
come between stages I and III.) We defined the
window of opportunity for screening to be T2 − T0,
where T0 is the first time the primary tumor is 0.5
cm in diameter (and hence visible on a transvaginal
ultrasound) and T2 is the first time there are 109

cells of type 2 (which corresponds to one gram).
These definitions are somewhat arbitrary, but our
formulas easily give results for other cutoffs.)
Using what is known about tumor growth and
mutation rates, we concluded that the window
of opportunity was 2.9 years, with most of the
distribution concentrated on [2.5,3] years. Thus,
in order to be effective, screening needs to be done
every two years. See [7] for more details. Figure
2 gives a picture of the growth of the three cell
populations on a log scale.

Figure 2. Plot of the sizes of the Primary (solid
line), Peritoneal (dotted line), and Metastatic

(dashed line) cell subtypes in the ovarian cancer
model on a logarithmic scale. The window of

opportunity for screening is [T0, T2][T0, T2][T0, T2], where T0T0T0 is
the first time the primary tumor has diameter

0.5 cm. T2T2T2 is the time at which there are 109109109

metastatic cells (approximately one gram).
Figure by Kaveh Danesh.

Models: Simple or Detailed?
I prefer simple models that can be analyzed
mathematically. For example, early in my career
I studied percolation and the Ising model. In the
stochastic Ising model each iron atom has a spin
that can be +1 (up) and −1 (down), and spins
flip at a rate that depends on the number of
neighbors of the opposite type. Of course, in a real
iron bar, atoms have a spin that points in some
direction in three-dimensional space, and spins
interact with other than their nearest neighbors.
However, despite these simplifications, the Ising
model yields insights into qualitative properties of
the magnetization phase transition.

On the other hand, cancer biologists often
prefer models that include all of the relevant
details. Chapter 6 of Cristini and Lowengrub’s
book [6] describes a model of ductal carcinoma
in situ, the most prevalent precursor to invasive
breast cancer. The authors use an agent-based
modeling framework that takes cell motility and
various cell-cell interactions into account, but then
one ends up with more than two dozen parameters,
simulations that are restricted to a 1 mm duct, and
a model that treats a two-dimensional slice instead
of the three-dimensional tube. See Figure 3 for a
picture of a simulation.

While the model is complex and analysis can
only be based on simulation, it has the advantage
of being realistic. At the SIAM Life Sciences meeting
in San Diego, August 7–10, 2012, I heard Paul
Macklin talk about how computations with this
model were useful in informing medical treatment
decisions [18]. The issue is that the calcified core
of dead cells in a breast cancer duct, which is
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Figure 3. Simulation of ductal carcinoma in situ.
Cell nuclei are the small dark blue circles;
quiescent (resting) cells are pale blue;
proliferating cells are green; apoptosing (dying)
cells are red; and necrotic (dead) cells are grey
until they lyse, after which their solid fraction
remains as debris (dark circles in center of duct).
The shade of red in the necrotic debris indicates
the level of calcification. Simulated times (from
top to bottom): 0, 7, 14, 21, and 28 days. Figure
from [18], reprinted with the permission of the
Journal of Theoretical Biology.

what can be seen in a mammogram, is smaller
than the region in which cancer cells are present.
Thus one must estimate the size of the region of
the breast to be removed. This is an important
problem, because 50 percent of women who have
a lumpectomy must return for a second surgery
because not all the cancer cells were removed the
first time.

If you are interested in learning more about
detailed models, the first 2012 issue of Mathemat-
ical Medicine and Biology has the proceedings of
a 2009 SIAM three-part minisymposium, “State of
the Art in Computational Modeling of Cancer”. This
style of modeling does not suit my skill set very
well, but the approach is valuable, and I am doing
my best to educate myself about it. Simple and
detailed models complement each other. Simple
models give insight into the working of detailed
models. Detailed models give mechanistic insights
that shape the form of the simple models and
rigorously calibrate their parameters.

Breast Cancer Heterogeneity
An article like this would not be complete without
some unsolved problems, so I’ll mention two.
Due to the introduction of microarray analysis
and the use of statistical classification techniques
[22], a subdivision of breast cancers into a half
dozen subtypes has been developed. The grouping
of tumors according to the established markers
estrogen receptor (ER), progesterone receptor (PR),
and HER2 has improved treatment outcomes, but
challenges remain. The first and most obvious is
that 16 percent of tumors show none of these
markers and are classified as triple-negative [27].

During the summer of 2012, one of my postdocs,
Marc Ryser, and I learned of another issue in a
meeting with Kimberly Blackwell, a researcher in the
Duke Cancer Institute. Due to tumor heterogeneity,
a small sample of one section of the tumor may
not reflect all of the mutations present. Thus, one
would like to understand the spatial structure of
heterogeneity in breast cancer, with the aim of
conducting more informative biopsies. That is, one
wants to avoid false negatives due to insufficient
sampling and tumor heterogeneity.

Much is known about the heterogeneity of
breast cancer between and within patients (see
[25]). However, despite a large amount of money
spent on tumor-sequencing studies, many of the
things we need to know concerning mechanisms
of that disease in order to develop a model are
not known, so it is hard to know where to begin.
Being a mathematician, my approach is to study a
simple spatial model and to understand how the
observed patterns of heterogeneity depend on the
model’s parameters. In this way we have results
that can be applied to a variety of cancer types.

An Exciting New Development
Announced in the August 23, 2012, issue of Nature
(see pages 462–463 for the “News and Views”
summary) is the fact that there is now conclusive
evidence of the existence of cancer stem cells (CSC)
that can produce tumor cells in the same way that
ordinary stem cells can produce normal tissue. The
existence of CSC has long been controversial. For
example, transplantation studies have shown that
human cancer cells when injected into mice rarely
cause cancer, leading to the conclusion that only a
small fraction of the tumor cells are responsible
for the disease. However, skeptics have pointed out
that removing cells from their natural environment
may change their behavior. For more see [29].

The three new papers, two in Nature [5], [9]
and one in Science [26], avoid this objection by
using a genetic technique called lineage tracing
to track cells in an existing tumor. The laboratory
techniques are ingenious and for most of us
are difficult to read and understand. However, I
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believe that mathematics can play an important
role in sorting out whether the assumed stem
cell dynamics will indeed produce the behavior
observed in the laboratory experiments. To see
what I have in mind, read [28] or just look at
their Figure 1, which compares tumor morphology
under the CSC and classical models.

It is remarkable what simple facts are not known
about the normal stem cells in our bodies, whose
existence is well documented. They sit at the
bottom of each of the 107 crypts in the colon, but
the best estimate is that there are 4–20 of them in
each crypt. Stem cells in the bone marrow produce
white blood cells, and some of them are quiescent
at any one time, but the quiescent fraction may be
10 percent or it may be 90 percent.

For a long time it was thought that stem cells
always divide asymmetrically, producing one stem
cell and one progenitor cell. However, recent
studies have shown that sometimes the result of
cell division is two stem cells and sometimes two
progenitor cells; see [15]. I found it interesting that
the authors’ analysis led them to a thirty-year-old
paper of Bramson and Griffeath on the voter
model [3] and that they applied its result for the
one-dimensional system to their data on colon
crypts.

Where Are the Math Problems in the Last
Two Sections?
Biology is not physics. Statistical mechanics, quan-
tum mechanics, relativity, and string theory have
given rise to complex mathematical problems
which can be happily studied by mathematicians
with no knowledge of physics. However, in my
twenty-five-year experience of working on prob-
lems that come from ecology, genetics, and now
cancer, 80 percent of the problem in a biological
application is to figure out what the question is,
what mathematical tools to use, and, in my case,
how to find a model that is simple enough to study
analytically and that can say something useful
about the application.

If You Are Excited About Cancer Modeling,
Then What’s Next?
Well, you just missed the SIAM Life Sciences
Meeting in San Diego, August 7–10, 2012, where a
lot of cancer modeling was discussed. Presumably
the 2014 meeting will have more of the same. An
easy entry into the subject will be provided by
the 2014–2015 year on cancer modeling at the
Mathematical Biosciences Institute. Till then you
can read a few of the papers in the references, visit
my webpage to see some of my papers, or go to
http://michorlab.dfci.harvard.edu/index.
php/publications for a more extensive set of
publications by collaborator Franziska Michor.

There are more papers to read than anyone
has time. When I searched MathSciNet recently,
it reported 2,423 papers on cancer and 212 on
breast cancer since 2000, but many of the latter are
statistical analyses. PDE people will probably have
more fun with the more than one hundred papers
on angiogenesis. The quantitative biology section
of the arXiv has cancer modeling papers, but by
far the most comprehensive collection is the open-
access PubMedCentral, where NIH grantholders
are required to put their papers. This is good news
and bad news: There are 3,800 papers with “breast
cancer” in the title since 2010.

While you can get a lot of information from
journals and books, by far the best way to get
into math biology is to find a biologist or medical
researcher to talk to. Bridging the communication
gap and trying to figure out what you can do to
help with their research is not easy, but then again,
things that are worth doing rarely are.
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