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T
he 2011 Nobel Prize for Chemistry was
awarded to Dan Shechtman for the
discovery of quasicrystals, an exotic
class of materials. The discovery was
published in 1984 and was quickly

treated as revolutionary, with front-page headlines
in newspapers.

While the award was for chemistry, the rev-
olution was more broadly based within the
interdisciplinary subject of materials science. This
can be described easily, and we will begin with a
sketch of the idea. The multifaceted implications
for mathematics are more complicated, and we
will try to elucidate them afterwards.

The basic fact is that quasicrystals are equilib-
rium solids which are not crystalline. Not only is
their pattern of atoms not crystalline, the pattern
has a fascinating hierarchical structure. However,
we emphasize that the hierarchical pattern is
not essential to the revolutionary significance of
quasicrystals to materials science.

It had been understood for many years, following
the development of X-ray diffraction, that common
inorganic solids (for instance all solids composed
of only one chemical element) are crystalline, and
great practical success followed from incorporat-
ing this into standard modeling, essentially by
analyzing various perturbations of a crystalline
atomic configuration. This is evident from basic
textbooks on solid state physics from the 1970s.
The startling fact uncovered by the discovery of
quasicrystals was the existence of a previously
unknown class of inorganic solids, of unknown
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Figure 1. A Penrose kite and dart tiling of the
plane.

diversity, for which a fundamentally different ap-
proach would be needed, specifically without the
help of an underlying crystalline structure. That
was the revolution in materials science.

As for the implications for mathematics, one
path quickly developed from the hierarchical atom-
ic patterns, which played a central role in the
theory of Levine and Steinhardt based on aperiodic
tilings such as the Penrose “kites and darts” (see
Figure 1).

This led to interesting mathematics. The de-
velopments with which I am familiar are in the
ergodic theory of aperiodic tilings and the theory
of density in hyperbolic spaces, but there are
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Figure 2. A strain angle α.

undoubtedly many more developments inspired
by the hierarchical structure.

That was the first, early line of development in
mathematics coming from quasicrystals. But there
is also significant mathematics intimately related
to the revolutionary character of quasicrystals:
the basic fact that quasicrystals are noncrystalline
solids. Clarifying this mathematical connection is
the goal for the rest of this article. This will require
some review of the nature of solids and their
modeling using equilibrium statistical mechanics,
which we will motivate by focusing on a certain
phenomenon.

To understand a material scientifically, one
typically studies the experimental response to a
disturbance; one kicks it and examines the reaction.
Electrical conduction concerns the response to an
applied voltage, sound propagation concerns the
response to a (rapidly varying) applied pressure,
elastic stress coefficients model the response to
applied mechanical forces, and so on. Let us
explore mechanical forces in more depth through
the following specific problem.

It is natural that if you tried to stand on an
ocean surface you would sink, because the water
molecules would move out of the way of the force
applied by your feet. Why then can you stand
on a glacier? It turns out that, the more one
analyzes these two contrasting material responses,
of water and of ice, the more intriguing the question
becomes, and we will use that idea to clarify the
significance within mathematics of the discovery of
quasicrystals. So we will keep in mind the problem:

(1) Why can you stand on ice but not water?

We begin with a certain classification of applied
mechanical forces, or stresses. Suppose we have
one balloon filled with water and another filled
by a single block of ice. The possible stresses
we could apply to the balloons are commonly
classified into “pressure”, which tends to change
the volume but not the shape of the balloon, and
“shear stress”, which tends to change the shape
but not the volume. Shape is quantified by angles
denoting “strain”; see Figure 2.

We can view the force and the associated
geometric change as responses to one another:
applying a force yields a change in the geometry
of the bulk material, and effecting a change in the

geometry is resisted by a corresponding force from
the material. The response is generally a nonlinear
function of its cause, but the coefficient of the linear
approximation is useful. The linear coefficient of
response forces to changes in geometry are called
moduli: (elastic) bulk modulus for pressure and
(elastic) shear modulus for shear.

Getting back to our question (1) and the need to
distinguish the response of ice from that of water,
we choose to concentrate on shear, in particular,
the shear moduli of ice and water. Pressure would
be much simpler to analyze but of little value,
since water is an incompressible fluid with almost
the same bulk modulus as ice. But water deforms
rather than supports any (static) shear at all, while
ice is hard to deform, so the shear modulus of
water is zero while that for ice is large. So, to
answer (1) we shall try to understand through
models why the shear moduli of water and ice are
so different. Perhaps we can also reverse focus
and ask whether this difference is the key to the
fundamental difference between water and ice.

We will explore our problem now in more depth,
beginning with the thermodynamic model of matter
as an intermediate step towards the statistical me-
chanics model. For convenience we will restrict our
modeling to “simple” materials which are (macro-
scopically) homogeneous, isotropic, uncharged,
and of only one chemical species, and which are
not acted on by magnetic, electric, or gravitational
forces. The model will thus be restricted to ques-
tions of internal energy, such as the transfer of
energy between two systems in contact, and the
interaction of these with mechanical operations on
the systems. A typical application might concern
the energy of a gas in the chamber of a piston, the
whole bathed in a fluid at fixed temperature, when
the chamber of the piston is expanded.

The formalism of thermodynamics makes use
of a quantity called the entropy density of the
system. Experiment demonstrates that a simple
system can be put into thermal equilibrium, where
it has a range of well-defined equilibrium states,
parameterized in several equivalent ways but, for
instance, by the two quantities of energy density
e and mass density m, so that all thermodynamic
quantities, including the entropy density and the
various mechanical properties, have unique values
for given (e,m). Furthermore, it is found that all
thermodynamic properties are computable from
the entropy density function, s(e,m). For instance,
∂s/∂e is inversely proportional to the temperature.
A transform of s(e,m), called the Gibbs free energy
density, g(P, T)—basically a Legendre transform of
s(e,m)—can play a role alternative to s(e,m) but
with variables P, T , the pressure and temperature
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respectively.

(2) All thermodynamic properties are uniquely
determined by the entropy density s(e,m),
or, alternatively, by the Gibbs free energy
density, g(P, T).

We next show how useful this observation can be
in the modeling of mechanical properties.

The experimental states of bulk matter in
thermal equilibrium can be organized into “phases”.
A phase is a set of states in an open connected
subset of the parameter space {(P, T)} which is
maximal with respect to the property that, within
that subset, all thermodynamic properties are
analytic. From (2) it suffices to require this of just
g(P, T), so the boundary of a phase consists of
singularities of g(P, T).

The simplest phase of any material is the
(isotropic) fluid phase, the phase which contains
all (P, T) with P sufficiently low and T sufficiently
high. The complement of the fluid phase for any
material contains those (P, T) with P sufficiently
high and T sufficiently low, and it contains one or
more distinct “solid” phases, typically with distinct
crystal structure. See Figure 3, which includes the
curves of singularities of g(P, T) bounding the
fluid and solid phases. We note that a phase can
bound itself; in fact, the part of the boundary of
the fluid phase at which that phase bounds itself is
where the gas and liquid forms of the fluid phase
coexist; see Figure 3.
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Figure 3. A schematic experimental parameter
space.

Using the language of phases, our problem is to
understand why the shear moduli of the fluid and
solid phases of water are so different. We sketched
the thermodynamic analysis of simple matter, but

this formalism does not address the causes of the
phenomena it describes. Traditionally one goes to
a deeper level of analysis, equilibrium statistical
mechanics, for such understanding.

In brief, statistical mechanics tries to show
how the thermodynamic properties of a material
follow from the interaction of constituent particles,
which we will call molecules; note that water
and ice are both made from H2O molecules
with the same interaction. The pressure of a
gas, which has a natural meaning in terms of
the mechanical properties of the bulk material,
can also be understood in terms of momentum
transfer between the molecules and between the
molecules and the environment of the gas. The
internal energy of the system can be understood
in terms of the mechanical notions of potential
and kinetic energies. However, the biggest step
in the development of statistical mechanics, due
to Boltzmann, was the model of entropy density
as (1/V) ln[ΓV (e,m)], where V is the volume
of the material in space and ΓV (e,m) is the
(high-dimensional) volume of the set of all joint
states c of the molecules that have total (kinetic
plus potential) energy density e(c) and mass
density m(c). The advantage of such modeling
is that if we can compute the potential and
kinetic energies between the molecules (even
in a model with unrealistic interactions), we
can, in principle, compute the entropy density
s(e,m) (or Gibbs free energy density g(P, T)),
from which all thermodynamic information would
follow. This would provide a deeper understanding
of the thermodynamic properties; the all-important
function s(e,m), or g(P, T), would follow from the
interactions of the component molecules.

One feature of statistical mechanics that was
omitted above, but which we need, concerns the
phases. Since we are trying to understand the
fundamental difference between these phases, it
is necessary that we have access to them in our
modeling. Now it has been known for many years
that, if we accept the conventional meaning of
phase boundaries as singularities of s(e,m) or
g(P, T), we must take the limit of system size to
infinity in the models. So to model the entropy
density we use

(3) s(e,m) = lim
V→∞

1
V

ln[ΓV (e,m)].
The above was a superficial introduction to the

standard modeling of bulk materials in thermal
equilibrium, including the notions of fluid and
solid phases, but even though superficial, we
can see that this modeling is insufficient to deal
with our problem of the rigidity of solids. The
difficulty is that the above theory does not address
the response of a material to an applied shear
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strain! In fact, it has been proven that the above
entropy density s(e,m) and Gibbs free energy
density g(P, T) are independent of the shape of
the material, and indeed we can look up material
properties without specifying the shape of our
material sample. And if g(P, T) is independent of
shape, how can we compute from it a response
to changing the shape? This is our problem: for a
macroscopic system of interacting molecules in
thermal equilibrium, how do we model the response
to shear strain and, in particular, show that it is
high for state parameters (P, T) corresponding
to the solid phase but identically zero for (P, T)
corresponding to the fluid phase?

We will sketch two approaches to this matter.
The first, by Aristoff and the author, gets around
the above difficulty by three steps. One is the
observation that the response to strain is in fact
computable using the statistical mechanics of a
finite system before taking the limit in system size.
The next idea is a bit technical, namely, to use
a response of a simpler nature than the reaction
force of the system, i.e., the volume or mass density
of the system. That is, one changes the shape
and measures whether or not the volume changes.
This is mildly counterintuitive, since shear is not
supposed to change volume, but indeed it can, and
this is actually a well-known phenomenon of sand
called dilatancy . More formally, it is reasonable
if we note that, because of the singularities of
the free energy all along the boundary separating
phases, g(P, T) is intuitively a completely different
function in different phases. So we might well
expect every thermodynamic quantity, including
the mass density, to be singular as (P, T) crosses
the boundary between phases.

The last idea is to look for a difference as we
interchange limits, namely, the infinite size limit
and the limit of infinitely small strain implicit
in the derivative of mass density with respect to
strain. More specifically, it is not hard to write a
formula for a system of finite fixed size for the
linear response, in other words, the derivative, of
the (average) mass density with respect to shear
strain. Then we can take the limit in the size of the
system. To repeat: we take the limit of vanishingly
small shear before we take the limit of infinite size.
As noted above, we know that taking the limits
in the other order cannot work, because as we
take the infinite size limit, the free energy loses
its dependence on the shape of the system. But
does interchanging the limits help? The quantity
we end up with, the volume limit of the derivative,
is no longer the linear coefficient in an expansion
of a response, since there is no response by the
infinite system. But it still might be meaningful.
We focused on the response because we thought it
might distinguish water from ice, and the quantity

we end up with may not be easy to interpret as
a response, but it still could play a useful role in
distinguishing fluid from solid in models. Does
it do this, and if it does, what does it represent
physically?

I said we can write a formula for the response,
but it is a complicated integral, with parameters
P , T , and V in high dimension, and I did not
say we could compute it analytically or even get
useful qualitative information from it. The only
evidence there is for the above theory comes from
simulation in a standard model called “hard disks”.
For that model one can let a computer (actually
many computers) apply Monte Carlo techniques
to simulate the desired equilibrium quantities,
and the result is that the linear response of mass
density with respect to shear strain jumps from
identically zero to nonzero precisely (within error!)
as the thermodynamic parameter values cross the
phase transition boundary between fluid and solid.
So it seems to work precisely as desired in an
important model, though this still leaves open its
physical interpretation.

We now note a somewhat different approach
to our basic problem (1) of distinguishing water
from ice by Sausset, Biroli, and Kurchan, which
uses the response to a time-dependent shear, a
shear with constant strain rate, a standard quantity
when analyzing fluids. The linear response of a
fluid to a constant shear strain rate, namely, the
(linear coefficient in the) response force to that
deformation rate, is called viscosity . Sausset et
al. analyze the viscosity of crystals using various
traditional physics approximations and conclude
that the difference between a fluid and a solid
is that, within a solid the viscosity diverges in
the limit of zero shear strain, while within a fluid
the viscosity vanishes in the limit of zero shear
strain. This offers a different intuitive picture of
the essential difference between ice and water from
that discussed earlier.

We cannot easily sketch the argument using vis-
cosity, because it concentrates on time dependence,
which is difficult to mesh with a well-defined notion
of phase. In modeling requires time-independent
equilibrium systems of infinite size. But we have
included the approach specifically to bring up the
important issue of time dependence, both in the
physical material and in models of it. Throughout
our discussion we have emphasized that qua-
sicrystals are materials in thermal equilibrium,
meaning they have the stability property that if
perturbed by “annealing”, the details of which are
unimportant here, the system would return to its
original state as measured by all thermodynamic
properties. It is easy to prepare simple dilute gases
in thermal equilibrium; all that is needed is to
provide a steady environment of given pressure
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and temperature, and the system will naturally and
quickly approach equilibrium. This is much harder
to do with solids, and in practice many solids would
change their state if annealed. Indeed, it is common
to purposely prepare solids out of equilibrium
in order to obtain desirable features: permanent
magnets are examples, as are (structural) glasses
such as window glass. From X-ray diffraction we
know that the atomic positions in window glass
are indistinguishable from that of the material in
a liquid state at some (P ′, T ′) corresponding to its
manufacture process rather than being crystalline,
as it would be in the true equilibrium state of
the material at the (P, T) of room pressure and
temperature. And yet of course window glass is
quite rigid. So a system which technically is just
a very sluggish (“viscous”) fluid, not in thermal
equilibrium, can behave like an equilibrium solid.
This makes (nonequilibrium) glasses notoriously
difficult to model. When we model a quasicrystal
we can use the fact that the material really is in
thermal equilibrium, in effect that an infinite time
limit has been taken; and clearly in our modeling
we must analyze the proper order of taking that
limit and the other limits of interest, namely, the
(technically challenging) infinite size limit and the
limit of zero strain. The proper simultaneous han-
dling of these three limits is highly nontrivial, and
such modeling issues cry out for the attention of
serious applied mathematics. The traditional role
for mathematics in open physics problems—for
instance, concerning phase transitions—is to give
proofs in standard, simplified models. However,
because of the sophisticated technical issues in-
volved, this problem seems to call for a different
sort of role for mathematics, namely, in helping to
determine the correct intuitive understanding of
the phenomenon at hand: the difference between
fluids and solids in thermal equilibrium.

In summary, there is a fundamental open prob-
lem in condensed matter physics to understand
the essential difference between water and ice.
In physics language we are looking for the right
“order parameter” to distinguish the fluid and
solid phases of matter in thermal equilibrium. It
is perhaps surprising that no one has ever found
an order parameter with which it could actually be
proven, in some simple but convincing model, that
a molecular system has a sharp transition between
fluid and solid phases, so we could say that the
shear modulus (or alternatively the derivative of
density with respect to strain, or the viscosity, both
sketched above) might play that role. Many of the
older attempts to find such an order parameter
focused on the difference in symmetry: the com-
plete Euclidean symmetry of the fluid versus the
crystalline symmetry of the solid. The existence
of quasicrystals has affected this basic problem

by showing that crystalline symmetry, and, by
extension, perhaps symmetry itself, may not be
relevant to an understanding of the fundamental
difference between fluid and solid phases, and this
fact motivated the attempts sketched above. The
present physical theory of the wide range of phase
transitions of materials developed, in part, by mo-
tivating significant progress in combinatorics and
probability. Finally coming to grips with this most
fundamental of phase transitions, the fluid/solid
transition, may well require something different,
a close collaboration of mathematics and physics
in the basic modeling, and this is just one natural
fallout of the quasicrystal revolution.
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