A Primer on Mathematical Models in Biology
Lee A. Segel and Leah Edelstein-Keshet

This textbook grew out of a course that the popular and highly respected applied mathematician Lee Segel taught. It introduces differential equations, biological applications, and simulations and emphasizes molecular events, excitable systems, and small protein and genetic circuits. It is intended for upper-level undergraduates in mathematics, graduate students in biology, and lower-level graduate students in mathematics who would like exposure to biological applications.

2013 • xxiv + 424 • Softcover • 978-1-611972-49-8
List $69.00 • SIAM Member $48.30 • OT129

Computational Mathematical Modeling: An Integrated Approach Across Scales
Daniela Calvetti and Erkki Somersalo

Mathematical Modeling and Computation 17

This textbook concentrates on two modeling paradigms: the macroscopic, in which the authors describe phenomena in terms of time evolution via ordinary differential equations, and the microscopic, which requires knowledge of random events and probability. The text emphasizes the development of computational skills to construct predictive models and analyze the results.

2012 • xii + 222 pages • Softcover • 978-1-611972-47-4
List $69.00 • SIAM Member $48.30 • MM17

Mathematical Models for Communicable Diseases
Fred Brauer and Carlos Castillo-Chavez

CBMS-NSF Regional Conference Series in Applied Mathematics 84

This graduate-level monograph appeals to readers interested in the mathematical theory of disease transmission models. The book provides insight into modeling cross-immunity between different disease strains and the synergistic interactions between multiple diseases; diseases transmitted by viral agents, bacteria, and vectors; and both epidemic and endemic disease occurrences.

2012 • xvi + 270 pages • Softcover • 978-1-611972-41-2
List $77.00 • SIAM/CBMS Member $53.90 • CB84

To ORDER
Please mention keycode “BNO13” when you order.

Order online: www.siam.org/catalog

Society for Industrial and Applied Mathematics