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Figure 1. The Mercedes frame {w1, w2, w3}.

A frame is a set of vectors in a Hilbert space
that provides robust, basis-like representations
even though the frame may be “redundant” or
“overcomplete”. In finite dimensions a frame is
simply a spanning set, but this statement belies
both the many practical applications of frames
and the deep mathematical problems that remain
unsolved. In infinite dimensions there are many
shades of gray to the meanings of “spanning” and
“independence”, and some of the most important
frames are overcomplete even though every finite
subset is linearly independent. Though we do not
have space to discuss them, applications drive
much of the interest in frames. A short and in-
complete list of areas in which frames play an
important role includes analog-to-digital conver-
sion and Sigma-Delta quantization, compressed
sensing, phaseless reconstruction, reactive sensing,
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transmission with erasures (e.g., over the Internet),
and classification and analysis of large data sets
such as those obtained using LIDAR (a remote
sensing method) or HSI (hyperspectral imagery).

Frames were introduced by Duffin and Schaeffer
in a 1952 paper in the Transactions of the AMS. In
that article (which is a model of clarity and well
worth reading today), they declare a set of vectors
F = {fn}n∈J , J a countable index set, to be a
frame for a Hilbert space H if there exist constants
A, B > 0 such that

A‖f‖2 ≤
∑
n∈J
|〈f , fn〉|2 ≤ B ‖f‖2, f ∈ H.

Sadly, Duffin and Schaeffer both passed away
before anyone thought to ask why they called such
a system a “frame”. Is it because A‖f‖2 and B ‖f‖2

“frame” the sum between them? We will never know.
In any case, a frame is tight if we can take A = B,
and it is Parseval if we can take A = B = 1.

Every orthonormal basis is a Parseval frame,
but a Parseval frame need not be orthogonal or a
basis. The Mercedes frame {w1, w2, w3}, pictured in
Figure 1, is a simple example of a tight frame (with
A = B = 3/2). Rescaling, {u1, u2, u3}, ui = cwi ,
c = (2/3)1/2 is a Parseval frame for R2, and hence
every vector v ∈ R2 satisfies

v = (v · u1) u1 + (v · u2) u2 + (v · u3) u3.

The coefficients in this linear combination are not
unique, because {u1, u2, u3} is dependent, yet this is
actually an advantage in many situations. However,
even in finite dimensions we usually require much
larger sets of vectors that form a frame, often for
a very high-dimensional space. Do there exist unit
vectors v1, . . . , v97 ∈ R43 that form a tight frame
for R43? This is a problem about equidistributing
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points on the sphere, but not with respect to the
usual notions of distribution. A collection of unit
vectors that forms a tight frame for Rd or Cd is
called a finite unit norm tight frame, or FUNTF.
Benedetto and Fickus characterized FUNTFs in
terms of the minima of a certain potential energy
function on the sphere. An active area of research
is to construct finite uniform norm tight frames
that are equiangular or as close to equiangular
as possible. Such frames would be important in
applications such as signal processing, radar, and
communications engineering.

If F = {fn}n∈J is a frame for a Hilbert space
H, then Sf =

∑
n∈J 〈f , fn〉 fn is a continuous linear

bijection ofH onto itself. The canonical dual frame
F̃ = {f̃n}n∈J , f̃n = S−1fn, satisfies

(1) f =
∑
n∈J
〈f , f̃n〉 fn, f ∈ H.

If the frame is tight, then f̃n = 1
A fn. In general,

the frame coefficients 〈f , f̃n〉 need not be the
only scalars cn that satisfy f =

∑
cnfn, but the

frame representation in equation (1) enjoys useful
“stability” properties. For example, the series
converges unconditionally, i.e., regardless of the
ordering of the index set J, and among all choices of
cn for a given f , the sequence of frame coefficients
has minimal `2-norm (but the sequence that has
minimal `1-norm is often sought for sparsity
reasons). The representations in (1) are unique
for every f if and only if F is a Riesz basis (the
image of an orthonormal basis under a continuous
linear bijection A : H → H). No proper subset of a
Riesz basis can be a frame, yet if a frame is not a
Riesz basis, then there exist proper subsets that
are frames.

Why do we need frames that are not orthonormal
bases or Riesz bases? The Classical Sampling
Theorem (also known as the Shannon or Nyquist-
Shannon Sampling Theorem) is a cornerstone of
information theory and signal processing. The
Sampling Theorem is equivalent to the statement
that the sequence Eb = {e2πibnx}n∈Z is a tight
frame for L2[0,1] for each 0 < b ≤ 1. Taking
b = 1, we obtain an orthonormal basis. However, if
b < 1, then Eb is not a Riesz basis for L2[0,1], and
hence frame coefficients are not unique (even so,
every finite subset of Eb is linearly independent).
If b = 1/N, then E1/N is a union of N orthonormal
bases, but in general Eb cannot be written as
a union of orthonormal bases. The Sampling
Theorem underlies the encoding of bandlimited
signals in digital form: we must have b ≤ 1 in order
to have a hope of reconstructing the original signal
from its encoding. Taking b < 1 corresponds to
“oversampling” the signal or to using a frame that
is not a Riesz basis. The “8 times oversampling”
note that appears on the labels of compact discs is

closely related. Oversampling aids in both noise
reduction and error correction.

Many seemingly simple questions about frames
lead to deep mathematical problems. For example,
it is natural to ask if we can explicitly characterize
the meaning of redundancy, especially for infinite
frames. In general, a frame cannot be written as
a union of orthonormal sequences, but can every
frameF = {fn}n∈J be written as the union of finitely
many nonredundant subsequences E1, . . . ,EN?
Here, a subsequence is nonredundant if it is a
Riesz basis not for the entire space H but for the
closure of its linear span. We call such a set a Riesz
sequence. (In finite dimensions, this would simply
be a linearly independent set.) Excluding the trivial
case ‖fn‖ → 0 suggests the following conjecture.

The Feichtinger Conjecture. If F = {fn}n∈J is a
frame for a Hilbert space H and inf ‖fn‖ > 0, then
there exist finitely many Riesz sequences E1, . . . ,EN
whose union is F .

Casazza and Tremain have shown that the
Feichtinger Conjecture is equivalent to the follow-
ing Kadison-Singer, or Paving, Conjecture, which
has been called the deepest open problem in
operator theory today. (They also demonstrated
that the Paving and Feichtinger Conjectures are
equivalent to a number of other open problems
from mathematics and engineering.)

Paving Conjecture. For each ε > 0 there exists an
integer M > 0 such that for every integer n > 0
and every n × n matrix S that has zero diagonal,
there exists a partition {σ1, . . . , σM} of {1, . . . , n}
such that,

‖PσjSPσj‖ ≤ ε ‖S‖, j = 1, . . . ,M,

where PI denotes the orthogonal projection onto
span{ei}i∈I and ‖ · ‖ denotes operator norm.

Duffin and Schaeffer were specifically interested
in frames of the formE = {e2πiλnx}n∈N for L2[0,1],
where {λn}n∈N is an arbitrary countable subset of
R or C. Such nonharmonic Fourier frames yield
“nonuniform” sampling theorems for bandlimited
signals. Although frame theory was largely over-
looked for many years after Duffin and Schaeffer,
nonuniform sampling is today a major topic, both
for bandlimited and nonbandlimited signals; e.g.,
it arises in magnetic resonance imaging (MRI).

In 1986 Daubechies, Grossmann, and Meyer
brought frames back into the limelight with their
work on Gabor frames and wavelet frames for
L2(R). A (lattice) Gabor frame is a frame of the
form G(g, a, b) = {e2πibnxg(x − ak)}k,n∈Z, where
g ∈ L2(R) and a, b > 0 are fixed (of course, g,
a, and b must be carefully chosen in order for
G(g, a, b) to actually form a frame). Thus a Gabor
frame is produced by applying a discrete set of
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translation and modulation operators to g, and as
a consequence there are underlying connections
to representation theory, the Heisenberg group,
and the uncertainty principle. Indeed, the Balian-
Low Theorem states that, if a Gabor frame is
a Riesz basis for L2(R), then the Heisenberg
product

(∫∞
−∞ |xg(x)|2 dx

) (∫∞
−∞ |ξ ĝ(ξ)|2 dξ

)
must

be infinite. Consequently, Gabor frames that are
Riesz bases have limited interest. On the other
hand, Feichtinger and Gröchenig proved that, once
we find a reasonable function g that generates
a Gabor frame G(g, a, b) for L2(R), then this
frame provides stable basis-like representations
not merely for square-integrable functions but
also for functions in the entire family of Banach
spaces Mp,qw (R) known as the modulation spaces.
Thus, from a simple Hilbert space frame criterion
we obtain representations valid across a wide
range of function spaces. Similar representations
hold for “irregular” Gabor frames of the form
{e2πibkxg(x − ak)}k∈N, though the proofs in this
setting are far more difficult. Recent advances in
this area have come from profound new versions
of Wiener’s Lemma in noncommutative Banach
algebras.

A wavelet frame is generated by the ac-
tions of translation and dilation. Specifically,
if ψ ∈ L2(R) and a, b > 0 are fixed and if
W(ψ,a, b) = {an/2ψ(anx − bk)}k,n∈Z is a frame
for L2(R), then we call it a wavelet frame. In
contrast to Gabor frames, it is possible to find very
nice functions ψ such that W(ψ,a, b) is a Riesz
basis or even an orthonormal basis for L2(R).
This discovery by Meyer, Mallat, and Daubechies
was the beginning of the “wavelet revolution”. A
wavelet frame or orthonormal basis generated by
a “reasonably nice” function ψ will provide frame
expansions not only for L2(R) but also for an
entire suite of Banach spaces, including Sobolev
spaces, Besov spaces, and Triebel–Lizorkin spaces.
Wavelet frames have important applications today,
as do various hybrid systems and generalizations
such as curvelets and shearlets, which are espe-
cially important for analysis in higher dimensions
(consider image or video processing). Even larger
redundant “dictionaries”, often so overcomplete
that they are not even frames, are the basis for the
theory and application of compressed sensing and
sparse representations.

We cannot resist mentioning one last open
problem. It is not difficult to show that any finite
subset of the nonharmonic systems {e2πiλnx}n∈N
studied by Duffin and Schaeffer is linearly inde-
pendent. For lattice Gabor systems G(g, a, b) =
{e2πibnxg(x− ak)}k,n∈Z, it is likewise known that
every finite subset is linearly independent, even if
the system is not a frame. However, the answer is
not known for irregular Gabor systems. As of this

writing, the validity of the following conjecture is
open.

Linear Independence of Time-Frequency Trans-
lates Conjecture. If g ∈ L2(R) is not the zero
function and {(ak, bk)}Nk=1 is a set of finitely many
distinct points in R2, then

{e2πibkxg(x− ak)}Nk=1

is linearly independent.

This conjecture is also known as the HRT
Conjecture. It is known to be true for many special
cases but not in general. For example, it is true if
N = 1, 2, or 3. It is not known for N = 4, even if
we impose the further condition that g is infinitely
differentiable. In fact, even the following is open.

HRT Subconjecture. If g is infinitely differentiable
and 0 <

∫∞
−∞ |g(x)|2 dx <∞, then{

g(x), g(x− 1), e2πixg(x), e2πi
√

2xg(x−
√

2)
}

is linearly independent.
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