
Meijer G–Functions:
A Gentle Introduction
Richard Beals and Jacek Szmigielski

T
he Meijer G–functions are a remarkable
family G of functions of one variable,
each of them determined by finitely
many indices. Although each such func-
tion is a linear combination of certain

special functions of standard type, they seem not
to be well known in the mathematical community
generally. Indeed they are not even mentioned
in most books on special functions, e.g., [1], [18].
Even the new comprehensive treatise [15] devotes
a scant 2 of its 900+ pages to them. (The situation
is different in some of the literature oriented more
toward applications, e.g., the extensive coverage in
[6] and [9].)

The present authors were ignorant of all but
the name of the G–functions until the second
author found them relevant to his research [3].
As we became acquainted with them, we became
convinced that they deserved a wider audience.
Some reasons for this conviction are the following:
• The G–functions play a crucial role in a certain

useful mathematical enterprise.
• When looked at conceptually, they are both

natural and attractive.
• Most special functions, and many products of

special functions, are G–functions or are express-
ible as products of G–functions with elementary
functions. There are seventy-five such formulas in
[4, sec. 5.6]; see also [6, sec. 6.2], [9, chap. 2], and
[20]. Examples are the exponential function, Bessel
functions, and products of Bessel functions (the
notation will be explained below):
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• The family G of G–functions has remarkable
closure properties: it is closed under the reflections
x → −x and x → 1/x, multiplication by powers,
differentiation, integration, the Laplace transform,
the Euler transform, and the multiplicative con-
volution. Thus, if G, G1, and G2 belong to G
and the various transforms and the multiplicative
convolution G1 ∗G2 exist, then the following also
belong to G:

G(−x), G(1/x), xaG(x), G′(x);(1) ∫ x
c
G(y)dy (for some choice of c);(2)

LG(x) ≡
∫∞

0
e−xy G(y)dy ;(3)

Ea,bG(x) ≡
∫ 1

0
ta−1(1− t)b−1G(ty)dt ;(4)

[G1 ∗G2](x) ≡
∫∞

0
G1

(
x
y

)
G2(y)

dy
y
.(5)

• The family G is minimal with respect to these
properties. For example, the only nonzero multiple
of ex that belongs to G is ex itself.

Closure under convolution, (5), is of particu-
lar importance for the mathematical enterprise
alluded to above. It lies at the heart of the most
comprehensive tables of integrals in print [16] and
online, as well as the Mathematica integrator; see
[19], [6], and [8].

866 Notices of the AMS Volume 60, Number 7



In our view, the key to a conceptual understand-
ing of a G–function is the differential equation
that it satisfies: the generalized hypergeometric
equation. We begin by noting what special prop-
erty singles out precisely these equations among
general linear homogeneous ODEs.

The Generalized Hypergeometric Equation
It is convenient here to replace the operator
d/dx with the scale–invariant operatorD = xd/dx,
which is diagonalized by powers of x:

(6) D[xs] = s xs .
The general homogeneous linear ODE

aN(x)
dn(u)
dxn

(x)+ aN−1(x)
dN−1(u)
dxN−1

(x)

+ · · · + a0(x)u(x) = 0

can, after multiplication by xN , be rewritten in the
form

(7)
bN(x)DNu(x)+ bN−1(x)DN−1u(x)

+ · · · + b0(x)u(x) = 0.

Suppose that the coefficients are analytic near
x = 0 and consider the standard power series
method: determine the coefficients of a formal
power series solution

∑∞
n=0 un xn by expanding (7)

and collecting the coefficients of like powers of x.
Carrying this out by hand can be quite tedious. For
example, what are the coefficients u5 and u10 in
the series expansion of the solution of

u′′(x)+ ex u(x) = 0,

given that u0 = 1, u1 = 0? This might lead one to
ask the following question:

When do the linear equations for the coefficients
{un} in the series expansion reduce to a two-term
recursion of the form cn un = dn un−1?

It is not difficult to show that the necessary and
sufficient condition on the coefficients bn is that
each has the form (αn x+ βn) xk for some fixed k.
It follows that (7) can be reduced to the form

Q(D)u(x)−αxP(D)u(x) = 0,

where Q and P are monic polynomials. In view of
(6), the recursion for the coefficients of a formal
series solution is

(8) Q(n)un = αP(n− 1) un−1.

If α = 0, this trivializes: e.g., if the bj are distinct,
any solution is a linear combination of powers
x1−bj . If α 6= 0, we may take advantage of the scale
invariance of the operator D to take αx as the
independent variable and reduce to the case α = 1.

Finally, the solution is trivial unless Q(0) = 0.
Thus, excluding trivial cases and up to normaliza-
tion, the answer to the question above is that (7)

must be a generalized hypergeometric equation
(GHGE), first version:
(9)D q−1∏

j=1

(D + bj − 1)− x
p∏
j=1

(D + aj)
u(x) = 0.

Generalized Hypergeometric Functions
For equation (9), the recursion (8) is

(10) n
q−1∏
j=1

(bj + n− 1) un =
p∏
j=1

(aj + n− 1) un−1.

(Here and subsequently we shall assume, usually
without explicit statement, various conditions,
such as the condition that no bj − 1 be a negative
integer.) The formal power series solution with
constant term 1 is

(11)
∞∑
n=0

(a1)n(a2)n · · · (ap)n
(b1)n(b2)n · · · (bq−1)n n !

xn,

where the extended factorial (a)n is defined by

a0 = 1,

an = a(a+ 1) · · · (a+ n− 1) = Γ(n+ a)Γ(a) , n ≥ 1.

The series (11) diverges for all x 6= 0 if p > q, has
radius of convergence 1 if p = q, and converges
everywhere if p < q.

For p ≤ q the function defined by the series is
the generalized hypergeometric function usually
denoted

pFq−1

(
a1, . . . , ap
b1, . . . , bq−1

∣∣∣∣∣x
)
.

Since the equation here has order q, there should be
an additional q − 1 linearly independent solutions.
We shall come back to this point later.

A More Conceptual Route to a Solution
We start from a second, slightly generalized, version
of (9). The factor D is replaced by D + bq − 1:
(12) q∏

j=1

(D + bj − 1)− x
p∏
j=1

(D + aj)
u(x) = 0.

Let us note two features of equation (12). First,
D is invariant under x → −x, so this sign change
converts (12) to
(13) q∏

j=1

(D + bj − 1)+ x
p∏
j=1

(D + aj)
u(x) = 0.

Second, under the change of variables y = 1/x, D
goes to−D. Therefore equation (12) is transformed
into one having the same form or else the form
(13) (depending on the sign of (−1)q−p), but with
the q parameters bj replaced by the p parameters
1 − aj , and the p parameters aj replaced by the
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q parameters 1 − bj . This allows one to assume
always that p ≤ q.

SinceD diagonalizes over powers of x, while mul-
tiplication by x simply raises the power, we might
try to find solutions in the form of (continuous)
sums of powers:

(14) u(x) = 1
2πi

∫
L
Φ(s) xs ds,

where L is a suitable closed contour in the complex
plane (or the Riemann sphere). We note in passing
that integral representations of solutions have a
clear advantage over series representations if one
wants to determine behavior for large values of x
or of the parameters.

Plugging the expression (14) into (12) and
assuming that we may differentiate under the
integral sign, we want

0 = 1
2πi

∫
L
Φ(s)

×
 q∏
j=1

(bj − 1+ s) xs −
p∏
j=1

(aj + s) xs+1

 ds
= 1

2πi

∫
L
Φ(s) q∏

j=1

(bj − 1+ s) xs ds

− 1
2πi

∫
L+1

Φ(s − 1)
p∏
j=1

(aj − 1+ s) xs ds.

If the contour L has the property that L+ 1 can
be deformed to Lwithout crossing any singularities
of the integrand, then we are led to the continuous
version of the recursion (10):

(15) Φ(s) q∏
j=1

(bj−1+s) = Φ(s−1)
p∏
j=1

(aj−1+s).

We shall refer to this condition on L as the
translation condition.

The various issues that arise in carrying out
the construction of solutions of (12), by solving
(15) and choosing a contour, arise already in the
simplest examples.

Example: q = 1, p = 0. We follow the usual con-
vention that the empty product equals 1. Therefore,
with q = 1 and p = 0, equation (12) reduces to

(16) (D + b − 1)u(x)− xu(x) = 0,

and the recursion equation (15) can be writtenΦ(s)Φ(s − 1)
= 1
b + s − 1

= Γ(b + s − 1)Γ(b + s) .

Therefore we may take Φ(s) to be the entire func-
tion 1/Γ(b + s) and set

(17) u(x) = 1
2πi

∫
L

xs dsΓ(b + s) .
Now if, as we shall assume, the contour L is closed
and does not cross a branch cut of xs , then, by

Cauchy’s theorem, u(x) = 0. This leads us to look
for another solution of (15).

The product ϕ(s)Φ(s) is a second solution of
(15) if and only if ϕ(s − 1) = ϕ(s). In order to
remain in the context of gamma functions, we may
use Euler’s reflection formula,

(18) Γ(z) Γ(1− z) = π
sinπz

,

and multiply the kernel 1/Γ(b + s) in the integral
(17) by

(19) ϕ(s) = π
sinπ(b + s) = Γ(b+ s) Γ(1− b− s),

leading to the function

(20) u(x) = 1
2πi

∫
L
Γ(1− b − s) xs ds.

Note that the factor (19) is antiperiodic rather
than periodic with period 1, i.e.,ϕ(s−1) = −ϕ(s).
This corresponds to changing the sign of x in
equation (16). We take as L the loop shown in
Figure 1. In fact, the translation condition implies
that the poles must lie on one side of L, and for a
nontrivial result we want L to enclose the poles of
the integrand, say in the negative direction. The
residue of Γ(1−b− s) at s = 1−b+n is (−1)n/n !,
so (20) is easily calculated:

u(x) =
∞∑
n=0

(−1)n
x1−b+n

n !
= x1−b e−x.

Re s = 0

Im s = 0

∞

∞

1− b

L

2− b 3− b 4− b

Figure 1. The contour L for (20).

Example: q = p = 1. Here equation (12) becomes

(21) (D + b − 1)u(x)− x(D + a)u(x) = 0.

Equation (15) becomesΦ(s)Φ(s − 1)
= a+ s − 1
b + s − 1

= Γ(a+ s)Γ(a+ s − 1)
· Γ(b + s − 1)Γ(b + s) ,

so one solution is Φ(s) = Γ(a+ s)/Γ(b + s):
(22) u(x) = 1

2πi

∫
L

Γ(a+ s)Γ(b + s) xs ds.
This function is meromorphic with poles at −a,
−a− 1, −a− 2, … . It has at most algebraic growth
as s →∞ (see the discussion below). Therefore, for
0 < |x| < 1 we may take L to be a loop to the right,
as in Figure 1. Again, the translation condition
requires that the poles lie on one side of this loop,
and therefore outside it. Therefore, by Cauchy’s
theorem, u(x) = 0 for 0 < |x| < 1.
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If |x| > 1 we may take L to be the loop shown
in Figure 2, enclosing the poles.

The residue of the integrand at the pole s =
−a− n is

(−1)n

n !
· 1Γ(b − a− n) · x−a−n.

By (18),

1Γ(b − a− n) = Γ(1+ a− b + n)(−1)n sin(b − a)
π

(23)

= (−1)n
Γ(1+ a− b + n)Γ(b − a)Γ(1+ a− b)

= (−1)n
(1+ a− b)nΓ(b − a) .

Therefore, for |x| > 1 our solution is

u(x) = x−aΓ(b − a)
∞∑
n=0

(1+ a− b)n
n !

(
1
x

)n
(24)

= x−aΓ(b − a)
(

1− 1
x

)b−a−1

.

Re s = 0

Im s = 0

−∞

−∞

−a

L
−a− 1−a− 2

Figure 2. The contour L for (22) when |x| > 1.

As in the case p = 0, we may change the
integrand, leading, for example, to

u(x) = 1
2πi

∫
L

Γ(1− b − s)Γ(1− a− s) xs ds.
Again for 0 < |x| < 1, we may integrate over a
contour that encloses the poles going to the right,
as in Figure 1. For |x| > 1 we choose a contour
going to the left, as in Figure 2, but enclosing no
poles. A calculation as in (23), (24), together with
Cauchy’s theorem, gives

u(x) =


x1−b(1− x)b−a−1

Γ(b − a) , 0 < |x| < 1;

0, |x| > 1.

An interesting special case is a = 0, b = 1, which
gives a step function:

u(x) = H(1− |x|), x 6= 0,

where H is the Heaviside function.
We leave it to the reader to consider two more

possibilities, with respective kernels Γ(a+ s) Γ(1−
b − s) and 1/[Γ(1− a− s) Γ(b + s)].

Representation by Generalized Hyper-
geometric Functions
Before proceeding to a discussion of the general
case, we look briefly at the second order equation

[(D + b1 − 1)(D + b2 − 1)
− x(D + a)u(x)]u(x) = 0.

One possibility for a solution is
(25)

u(x)= 1
2πi

∫
L
Γ(a+s) Γ(1−b1−s) Γ(1−b2−s) xs ds.

Another way to construct a solution is to look for
u1(x) = x1−b1v1(x). The corresponding equation
for v1 is

[D(D + b2 − b1)− x(D + a+ 1− b1)] v1(x) = 0,

which has a solution in standard form:

(26) v1(x) = 1F1

(
a+ 1− b1

b2 + 1− b1

∣∣∣∣∣x
)
,

and similarly with b1 and b2 interchanged. The
solution (25) must be a linear combination of
these two. The coefficients can be determined
by looking at the residues of the integrand at
the pole s = 1 − b1 and at the pole s = 1 − b2:Γ(a+1−b1) Γ(b1−b2) and Γ(a+1−b2)Γ(b2−b1)
respectively. The result is

u(x) = Γ(a+ 1− b1) Γ(b1 − b2)

× x1−b1
1F1

(
a+ 1− b1

b2 + 1− b1

∣∣∣∣∣x
)

(27)

+ Γ(a+ 1− b2) Γ(b2 − b1)

× x1−b2
1F1

(
a+ 1− b2

b1 + 1− b2

∣∣∣∣∣x
)
.

There is one notable feature of this particular
combination of the two standard solutions v1, v2.
Each of the vj has exponential growth as x→ +∞,
but (27) does not. In fact, the integrand decays
exponentially in both directions on vertical lines,
so we may deform the contour L into one that
consists of a small circle around s = a, together
with a vertical line Re s = c < Rea. The leading
term can be computed from the residue at s+a = 0:
(28)
u(x) ∼ Γ(a+1−b1) Γ(a+1−b2) x−a as x→ +∞.
Thus this integral form singles out the unique (up
to a multiplicative constant) linear combination
of the two standard solutions that has algebraic
behavior at +∞.

General Considerations about Kernels and
Contours
For each case of equation (12), the function Φ that
satisfies the recursion equation (15) can and will
be taken to be a quotient of products of gamma
functions in the form Γ(−cj + s) or Γ(dj − s).
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Therefore the poles of Φ, if any, will consist of
finitely many sequences of points:

(a) cj , cj−1, cj−2, . . . or (b) dj , dj+1, dj+2, . . . .

The translation condition requires that any such
sequence must lie on one side of the contour
L. The contour L is always chosen to separate
the sequences (a) of poles that go to the left
from the sequences (b) that go to the right. (A
technical remark: We do not actually need the
translation condition to deduce that these solutions
of (15) give rise to solutions of the generalized
hypergeometric equation; the condition that L
separate the sequences of poles in this way is
sufficient.)

We consider three types of contours L:
L = LI : beginning at −i∞, ending at +i∞;
L = L∞: beginning and ending at +∞, oriented

clockwise;
L = L−∞: beginning and ending at −∞, oriented

counterclockwise.
In order to see which contours are available in a

given case, we note here some basic facts about
asymptotics.

First, Stirling’s formula,
(29)

Γ(z) =
√

2π
z

(
z
e

)z [
1+O

(
1
z

)]
as z →∞,

is valid uniformly in the right half-plane Rez ≥ 0.
It implies that Γ grows faster than exponentially
to the right along any horizontal line and decays
exponentially in both directions along any vertical
line in the right half-plane.

Second, the reflection formula (18), combined
with (29), gives the asymptotic behavior in the
left half-plane Rez ≤ 0: Γ decays faster than
exponentially to the left along any horizontal
ray other than the negative real axis and decays
exponentially in either direction along any vertical
line in the left half-plane as well. These facts imply
that, for any fixed a, b,

(30)
Γ(a+ s)Γ(b + s) ∼ sa−b as s →∞

along any ray that avoids the zeros and poles of
the quotient.

Meijer G–functions
Here we consider the general hypergeometric
equation (12) but with a difference from the
standard notation: the indices {bj}, {aj} are
replaced by the reflections {1− bj}, {1− aj}:

(31)

 q∏
j=1

(D − bj)− x
p∏
j=1

(D + 1− aj)
u(x) = 0.

We assume again that p ≤ q. The previous consid-
erations lead us to a solution which, in Meijer’s
notation, is G0,p

p,q :

(32)

G0,p
p,q

(
a1, . . . , ap
b1, . . . , bq

∣∣∣∣∣x
)

= 1
2πi

∫
L

∏p
j=1 Γ(1− aj + s)∏q
j=1 Γ(1− bj + s) xs ds.

Meijer [10] introduced a family of solutions of
equation (31), denoted by

Gm,np,q

(
a′1, . . . , a′p
b′1, . . . , b′q

∣∣∣∣∣ (−1)m+n+px
)
,

0 ≤m ≤ q, 0 ≤ n ≤ p,
where the {a′j} and {b′j} are permutations of the
original indices {aj} and {bj} respectively. The
upper index m indicates that the first m factors
in the denominator of the integrand have been
changed to factors Γ(bj − s) in the numerator and
the last p − n factors in the numerator have been
changed to factors Γ(aj − s) in the denominator.
This results in a total of m + n factors in the
numerator.

Taking into account the invariance of the
integrand under permutations of the indices aj
and bj (separately) in the numerator and also in
the denominator, one can obtain 2p+q solutions
of (31). However they are not necessarily distinct.
If p < q, then the 2p solutions with m = 0 vanish
identically, as in our first solution (17) in the case
q = 1, p = 0. If p = q, only the solution with
m = n = 0 vanishes identically.

The choice of contours depends first on p and q.
If p < q (resp. p > q), the gamma function kernel Φ
has faster than exponential decay to the right (resp.
left) on horizontal lines. Thus, for p < q, one can
take a contour L = L∞ as in Figure 1, and for p > q
a contour L = L−∞ as in Figure 2. In either case
the contour is chosen to separate the sequences of
poles going to +∞ from those going to −∞.

If there are more gamma factors in the numerator
than in the denominator, i.e., m + n > (p + q)/2,
then Φ decays exponentially along vertical lines
and the contour can be deformed into LI from
−i∞ to +i∞. If m+ n = (p + q)/2, Φ has algebraic
behavior at ∞ by (30), and again the contour can
be deformed, but this may require interpreting the
integral in the sense of distributions.

When p = q, the kernel Φ itself has algebraic
behavior as s → ∞, just as in the case p = q = 1
above, so the choice of contour differs according
to whether 0 < |x| < 1 or |x| > 1.

A striking advantage of this method of producing
solutions is the ease of finding solutions with
prescribed behavior as x→ 0 or x→∞. Assuming
again that p ≤ q, the standard solutions of the
form xbj pFq−1 that are xbj [1+ (O(x)] as x→ 0 are
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multiples of the G–functions withm = 1. Solutions
that are xaj−1[1+O(x−1] as x → ∞ are multiples
of the G–functions with n = 1, m+ 1 > (p + q)/2.

The Mellin Transform and the Convolution
Theorem
The Mellin transform is the multiplicative version
of the Laplace transform. We normalize it as

Mf (s) =
∫∞

0
f (x) x−s

dx
x
.

The inverse transform is then

M−1g(x) = 1
2πi

∫ c+i∞
c−i∞

g(s) xs ds.

This suggests, correctly, that if a G–function

G(x) = 1
2πi

∫
L
Φ(s) xs ds

has (in some suitable sense) a Mellin transform,
then that transform is the kernel Φ. As an exercise,
one can check this with (24): change the variable of
integration to y = 1/x to find that the Mellin trans-
form is a beta function and therefore expressible
in terms of gamma functions.

It is not difficult to verify that the Mellin
transform takes multiplicative convolution to a
product: in the notation of (5),

M(G1 ∗G2) =MG1 ·MG2.

If G1 and G2 are G–functions withMGj = Φj , then
the product Φ1Φ2 is itself a quotient of products
of gamma functions. If

Gj = G
mj ,nj
pj ,qj , j = 1,2,

then G1 ∗G2 is a G–function of type

Gm1+m2,n1+n2
p1+p2,q1+q2 .

Some bookkeeping will identify the indices {aj},
{bj} for G in terms of the indices {aj,1}, {bj,1} for
G1 and {aj,2}, {bj,2} for G2.

This explains the convolution result (5). We
leave verification of the closure under (1), (2), (3),
and (4) to the reader.

We note in passing that the most commonly
used integral transforms, such as the Laplace,
Hankel, and fractional integral transforms, as well
as the Mellin transform itself, can be viewed as
special cases or variants of the general G–function
transform

Tf(x) =
∫∞

0
G(xt) f (t) dt.

Conversely, the range of the G–function transform
can be characterized in terms of the special cases
just mentioned; see [17].

Discussion and History
The one bit of motivation that we have found in the
literature is the remark in [4] that “the G–function
provides an interpretation of the symbol pFq when
p > q + 1.” Let us start from the equation

(33)

 p∏
j=1

(D + aj − 1)− x
q∏
j=1

(D + bj)
v(x) = 0,

p ≥ q.
As we noted earlier, under the changes of variables
x→ ±1/x the operator D goes to −D. Therefore if
we set

u(x) = v
(
(−1)p−q

x

)
,

equation (33) is equivalent to equation (31). This
explains the departure in (31) from the usual index
notation (12).

We cannot help noting that the remark is of
limited explanatory value (apart from the question
of notation), since pFq−1, with p ≤ q and a given
set of indices, denotes a single solution to (9), not
2p+q solutions.

Meijer’s original definition in 1936 [10] is the
general version of (27): represent the function
as a linear combination of the standard basis
of solutions of (31). (This definition tacitly rules
out the cases with index m = 0, which give the
trivial solution.) Only in [11] did Meijer present
the integral formulation above. The 1936 paper
translates many formulas for special functions of
the form

f (x) = h(x) k(x)
or

f (x) = h1(x) k1(x)+ h2(x) k2(x)
into a form like

G(x) = G1(x)G2(x),

and many integral formulas into the convolution
form

G(x) = G1 ∗G2(x).
It appears that Meijer may simply have done so
many calculations that he could see exactly what
linear combinations would make these formulas
work out so neatly. (He may also have been
guided by known examples that yield specified
asymptotics, as in the example (27) above.) Only
later did Meijer establish the integral formulas
like (32) that are now taken as the definition [10].
In a lengthy series of papers he explored further
relations with classical special functions, relations
among the G–functions themselves, and questions
of asymptotics [12], [13]; see also [5].

The idea to represent solutions of the GHGE as
integrals of the kind we have been discussing—a
type now known as Mellin–Barnes integrals—goes
back to Barnes in 1908 for the Euler–Gauss case
q = p = 2 [2] and to Mellin in 1910 for the general
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case [14]. Indeed, Mellin has a thorough discussion
of the recursion equation (15) and its solutions.
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