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the p-adic Mandelbrot
Set?

Joseph H. Silverman

Before attempting to answer the title question,
we must first answer two preliminary questions:
“What are the p-adic numbers?” and “What is the
(classical complex) Mandelbrot set?” We start with
the former.

A standard characterization of the real num-
bers R is as the smallest field containing Q that
is complete with respect to the “usual” absolute
value |r |∞ = max{r ,−r} on Q, where we recall
that a field is complete if every Cauchy sequence
converges. But there are other absolute values
on Q. Ostrowski showed that, up to a natural
equivalence, there is one absolute value for each
prime number p. Writing a rational number r as
r = pk ab with p not dividing ab, the p-adic absolute
value of r is defined by |r |p = p−k. Intuitively, two
rational numbers r and s are p-adically close if the
numerator of their difference is divisible by a large
power of p. Then the field of p-adic numbers Qp
is the smallest field containing Q that is complete
with respect to the p-adic absolute value | · |p. The
p-adic numbers were invented by Hensel in the
nineteenth century. They are analogous in many
ways to R. For example, the field Qp is locally
compact for the topology induced by | · |p, and
one can do p-adic analysis with p-adic power series.
A significant difference between R and Qp is that
the p-adic absolute value satisfies the “ultrametric”
triangle inequality |r + s|p ≤max

{
|r |p, |s|p

}
. This

implies that the unit disk
{
x ∈ Qp : |x|p ≤ 1

}
is a

compact subring of Qp, which is nice, but it also
implies that Qp is totally disconnected, which is
not so nice. Also, although the fields R and Qp

Joseph H. Silverman is professor of mathematics at Brown
University. His email address is jhs@math.brown.edu.

DOI: http://dx.doi.org/10.1090/noti1038

are complete, they are not algebraically closed; so
just as it is often better to work with the complete
algebraically closed field of complex numbers C,
it is also often better to work with the field Cp,
the smallest complete algebraically closed field
containing Qp. But we note that Cp is a monster of
a field; it is not even locally compact!

The classical (degree 2 complex) Mandelbrot
set M∞ arises in studying the dynamics of the
simplest family of nonlinear functions, which is
the set of quadratic polynomials fc(x) = x2 +
c. Dynamicists study the effect of repeatedly
applying the map fc to an initial point a ∈ C; i.e.,
they study how the points in the orbit Ofc (a) =(
a, fc(a), f 2

c (a), . . .
)

move aroundC, where f nc = fc ◦
fc◦· · ·◦fc denotes thenth iterate of fc . Of particular
interest is the Julia set J(fc) of fc , which is the set
of initial points where the iterates of fc behave
chaotically. The Julia set may also be described as
the boundary of the set of initial pointsa ∈ Cwhose
orbitOfc (a) is bounded. Surprisingly, the geometry
of J(fc) is heavily influenced by the orbit of the
single point 0. For example, a famous theorem
of Fatou and Julia (discovered independently)
says that if Ofc (0) is bounded, then J(fc) is
connected (although generally quite fractal-like),
and otherwise J(fc) is totally disconnected. This
dichotomy divides the parameter space of c
values into two pieces. The Mandelbrot set M∞
is the set of parameters c ∈ C such that the
orbit Ofc (0) is bounded, or equivalently, such
that J(fc) is connected. You have undoubtedly
seen pictures of the incredibly complicated and
beautiful Mandelbrot set. It has become one of the
most ubiquitous images in all of mathematics, and
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the study of its geometry has occupied generations
of mathematicians.

The modern theory of complex dynamics dates
from the fundamental work of Fatou and Julia
around 1920. The study of p-adic dynamics is more
recent, where initial investigations in the 1980s by
Herman, Yoccoz, and others led to an explosion of
interest starting in the 1990s with groundbreaking
results by Benedetto, Bézivin, Hsia, and Rivera-
Letelier. The classical Mandelbrot set is defined
in terms of whether

∣∣f nc (0)∣∣ is bounded or goes
to infinity as n →∞. We can use exactly the same
definition to define the p-adic Mandelbrot setMp.
Thus c ∈ Cp is in Mp if and only if

∣∣f nc (0)∣∣p is
bounded as n →∞. The only change is that we’ve
replaced the usual absolute value on C with the
p-adic absolute value on Cp. However, using the
ultrametric property of | · |p, it is very easy to see
that

∣∣f nc (0)∣∣p is bounded if and only if |c|p ≤ 1, so
Mp =

{
c ∈ Cp : |c|p ≤ 1

}
is the closed unit disk,

which really is not very interesting.
If that were the end of the story, then we’d

have wasted a lot of ink, since the title question
would have a single word answer: boring. Luckily,
matters become more interesting when we look at
Mandelbrot sets associated with polynomials of
higher degree. But first we ask why it is that the
orbit of the particular point 0 for fc(x) = x2+c has
such a profound influence on the dynamics of fc .
What makes the point 0 so important? The answer
is that 0 is the (unique) critical point of fc , i.e., the
derivative f ′c(x) vanishes at 0, and thus there is
no neighborhood of 0 on which fc is one-to-one.
We now fix d ≥ 2, and for each (d − 1)-tuple
c = (c1, . . . , cd−1) ∈ Cd−1, we define a (normalized)
degree-d polynomial

fc(x) = xd + c1xd−2 + c2xd−3 + · · · + cd−2x+ cd−1.

(Every degree-d polynomial can be put into this
form by conjugating by a linear polynomial. This
conjugation does not materially affect the dy-
namics.) The polynomial fc (x) has d − 1 critical
points γ1, . . . , γd−1 (counted with multiplicity)
whose orbits similarly have a profound influence
on the dynamics of fc . We say that fc is criti-
cally bounded if the orbits Ofc (γi) of all of the
critical points are bounded. Then the degree-d
Mandelbrot setM∞,d is the set of c ∈ Cd−1 whose
associated polynomials fc are critically bounded.
If we work over C, then these higher degree ana-
logues of M∞,2 are extremely complicated, with
higher-dimensional fractal-like boundaries.

It’s clear how we should define the p-adic
analogue of the degree-d Mandelbrot set; it is the
set

Mp,d = {c ∈ Cd−1
p : fc (x) is p-adically critically

bounded},

where of course we now use the p-adic absolute
value to determine whether the orbits

{
f nc (γi)

}
of the critical points are bounded. If p is large,
then Mp,d is again boring, as shown by the
following result that has long been “well known to
the experts,” but seems to have first been written
down in [1].

Theorem 1. If p ≥ d, thenMp,d is a polydisk,

Mp,d = {c ∈ Cd−1
p : |ci|p ≤ 1 for all 1 ≤ i ≤ d − 1

}
.

The fact thatMp,2 is a disk for all p, combined
with Theorem 1, seems to have discouraged people
from studying p-adic Mandelbrot sets, but recent
work by Anderson has shown that when p < d,
the p-adic Mandelbrot setMp,d has a complicated
geometric structure that may rival the geometry
of the classical complex Mandelbrot sets.

Example 2. Consider the action of the polynomial
g(x) = x3− 3

4x−
3
4 on C2. The critical points of g(x)

are ± 1
2 , and they both have finite orbits, since

−1
2

g
----------------------------→ −1

2
and

1
2

g
----------------------------→ −1

g
----------------------------→ −1.

Hence (− 3
4 ,−

3
4) ∈M2,3, soM2,3 is not contained

in the unit polydisk. (Note that | 34 |2 = 4 > 1.)

More generally, consider the one-parameter
family of polynomials gt(x) = x3− 3

4 t
2x− 1

4(t
3+2t),

so g(x) = g1(x). The critical points of gt(x) are the
fixed point γ1 = − 1

2 t and the point γ2 = 1
2 t , so gt

is critically bounded if and only if the orbit of 1
2 t

is bounded. One can show that gt(x) is critically
bounded for the sequence of parameter values
t = 1+ 22k converging 2-adically to 1, while it is
critically unbounded for the sequence of parameter
values t = 1+ 3 · 22m+1, also converging 2-adically
to 1. Thus (− 3

4 ,−
3
4) is on the boundary of M2,3.

Computations in [1] show that the geometry
ofM2,3∩Q2 in a 2-adic neighborhood of (− 3

4 ,−
3
4)

is extremely complicated, and they further suggest
that this neighborhood is geometrically equivalent
(in some not yet precisely defined sense) to a
2-adic neighborhood of the critical point 1

2 in the
Julia set J(g1) ∩Q2. This is our first inkling of
a potential p-adic analogue of a famous classical
result over C that says that a Misiurewicz point c
inM∞,2 has a neighborhood that is quasi-similar
to a neighborhood of the critical point 0 in the
complex Julia set J(fc).

If p < d, then the p-adic Mandelbrot setMp,d is
(generally) not contained in the unit polydisk, so it is
an interesting problem to compute or estimate the
p-adic radius ofMp,d . For this purpose, we define
the p-adic critical radius Rp,f of a polynomial f (x)
to be the maximum of |γ−α|p as γ ranges over the
critical points of f (x) (roots of f ′(x)) and α ranges
over the fixed points of f (x) (roots of f (x) − x).
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Then the critical radius ofMp,d , denoted R(Mp,d),
is the maximum of Rp,f for f ∈Mp,d .

Example 3. It is an easy consequence of Theorem 1
that R(Mp,d) = 1 for p ≥ d. On the other hand, the
polynomial from Example 2 satisfies

g′(x) = 3x2 − 3
4
= 3(x− 1

2
)(x+ 1

2
)

and

g(x)− x = (x+ 1)(x− 3
2
)(x+ 1

2
),

so R2,g = 2. Hence R(M2,3) ≥ 2.

Theorem 2 (Anderson [1]). Let p be a prime satisfy-
ing 1

2d < p < d. Then R(Mp,d) = pp/(d−1). Further,
R(Mp,2p) = 1.

To prove the lower bound for R(p, d), it suffices
to exhibit a single polynomial in Mp,d . Explicitly,
one can show that the polynomial xd−p(x−β)p has
critical radiuspp/(d−1) for the carefully chosen value
β = [(−p/d)p(1 − p/d)d−p]−1/(d−1). The upper
bound in Theorem 2 is more difficult and requires
an elaborate calculation with Newton polygons. It’s
possible that the argument in [1] can be extended to
compute R(Mp,d) for 1

3d < p <
1
2d, but it appears

to be a difficult problem to evaluate R(Mp,d) when,
say, p <

√
d.

Returning now to the classical complex Man-
delbrot setM∞,2, we consider the collectionH∞,2
of hyperbolic maps, which is the set of parame-
ter values c ∈ M∞,2 such that the orbit of the
critical point 0 of fc(x) = x2 + c converges to an
attracting cycle. In other words, c ∈ H∞,2 if and
only if limn→∞ f nc (0) converges to a point α ∈ C
satisfying fmc (α) = α and

∣∣(fmc )′(α)∣∣ < 1 for some
m ≥ 1. It is known that H∞,2 is an open sub-
set of M∞,2, and the Lebesgue measures satisfy
1.503 ≤ µ(H∞,2) ≤ µ(M∞,2) ≤ 1.562. The famous
Hyperbolicity Conjecture asserts thatH∞,2 equals
the entire interior ofM∞,2.

The p-adic analogue Hp,2 is defined similarly;
we simply replace C with Cp and use | · |p in place
of the complex absolute value. Then, althoughHp,2
is a subset of the (boring) closed unit disk Mp,2,
it turns out that Hp,2 itself is quite complicated.
A first reduction is to note that Hp,2 is the full
inverse image under the “reduction mod p map”
of the set

H p,2 =
{
c ∈ Fp : fmc (0) = 0 in Fp for some m ≥ 1

}
.

(Here Fp denotes an algebraic closure of the finite
field Fp.) It is conjectured thatH p,2 is quite small,
in contrast to the complex hyperbolic set H∞,2,
which has positive Lebesgue measure.

Conjecture 3. Let p ≥ 3. Then

lim
k→∞

#(H p,2 ∩ Fpk)
pk

= 0.

A beautiful and deep result of Jones [3] says that
Conjecture 3 is true if p ≡ 3 (mod 4) and that a
slightly weaker statement with an alternative notion
of density is true for all p ≥ 3. Jones’s proof begins
by using the function field Chebotarev density
theorem to reduce the problem to properties of the
action of the Galois group of Fp(t)/Fp(t) on the
iterated preimage tree of 0. He next constructs a
stochastic process that encodes information about
the group action and shows that this process is a
martingale. Finally, additional information about
the group action is combined with a martingale
convergence theorem to complete the proof.
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