Exploring Advanced Euclidean Geometry with GeoGebra
By Gerard A. Venema

This book provides an inquiry-based introduction to advanced Euclidean geometry. It utilizes dynamic geometry software, specifically GeoGebra, to explore the statements and proofs of many of the most interesting theorems in the subject. Topics covered include triangle centers, inscribed, circumscribed, and escribed circles, medial and orthic triangles, the nine-point circle, duality, and the theorems of Ceva and Menelaus, as well as numerous applications of those theorems. The final chapter explores constructions in the Poincaré disk model for hyperbolic geometry. The book can be used either as a computer laboratory manual to supplement an undergraduate course in geometry such as Foundations in Geometry, 2/E by the author, or as a stand-alone introduction to advanced topics in Euclidean geometry.

Catalog Code: EAEG
129 pp., 2013
ISBN 978-0-88385-784-7
List: $50.00
MAA Member: $40.00

Beyond the Quadratic Formula
By Ron Irving

The quadratic formula for the solution of quadratic equations was discovered independently by scholars in many ancient cultures and is familiar to everyone. Less well known are formulas for solutions of cubic and quartic equations whose discovery was the high point of 16th-century mathematics. Their study forms the heart of this book, as part of the broader theme that a polynomial’s coefficients can be used to obtain detailed information on its roots. A closing chapter offers glimpses into the theory of higher-degree polynomials, concluding with a proof of the fundamental theorem of algebra. The book also includes historical sections designed to reveal key discoveries in the study of polynomial equations as milestones in intellectual history across cultures.

To order call 1-800-331-1622
or online at: http://maa-store.hostedbywebstore.com/