
?W H A T I S . . .

the Leech Lattice?
Chuanming Zong

The Leech lattice is a magical structure in twenty-
four-dimensional Euclidean space E24 that was
inspired by Golay’s error-correcting code G24. The
magic of the Leech lattice led Conway to the dis-
covery of the three sporadic simple groups: Co1,
Co2, and Co3. Also magically, the Leech lattice
provides the optimal kissing configuration for the
24-dimensional unit ball as well as the densest
lattice ball packing in E24.

Data in digital systems are typically stored, trans-
mitted, and processed in binary codewords. If a sin-
gle codeword is in error, the message is garbled or
the computation spoiled. Starting in the 1940s, scien-
tists searched for coding systems that could detect
and even correct errors.
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Figure 1. The data transmission process.

In 1947 R. Hamming discovered the first binary
error-correcting code, H7, which is generated by
four vectors, (1,1,0,1,0,0,0), (0,1,1,0,1,0,0),
(0,0,1,1,0, 1,0) and (0,0,0,1,1,0,1), over Z2. The
Hamming distance between two codewords is the
number of their different entries. The minimal
Hamming distance of the code above is four, and
therefore this code can detect and correct single-bit
errors.

Let w1 denote the binary 23-tuple (1,1,0,0,0,1,
1,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0). If we write
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the final entry, 0, first, followed by the other
22 entries, we get the first cyclic shift of w1:
(0,1,1,0,0,0,1,1,1,0,1, 0,1,0,0,0,0,0,0,0,0,0, 0).
The next cyclic shift is (0,0,1,1,0,0,0, 1,1,1,0,1,0,
1,0,0,0,0,0,0,0,0,0), and so on. Then w1 and its
cyclic shifts generate a binary code, the Golay code
G23, which was discovered by M. J. E. Golay in 1949.
The minimal Hamming distance of this code is
seven, and therefore it can detect and correct three-
bit errors. This code has 212 = 4096 codewords.
By adding a parity check to each codeword of G23,
we get the extended Golay code G24. The minimal
Hamming distance of G24 is eight.

The philosophy of error-correcting codes—to de-
sign codes with both large minimal Hamming dis-
tances and large numbers of codewords—is related
to ball packings with large packing densities. In 1965
J. Leech constructed a twenty-four-dimensional lat-
tice Λ by lifting the extended Golay code G24 from
Z24

2 to Z24 and restricting the sum of the coordinates
to zero modulo 4. Here an n-dimensional lattice is
the set of all linear combinations of n linearly inde-
pendent vectors over Z. In 1967 Leech realized that
there are big holes in Λ. Filling those holes doubles
the density and produces a remarkable lattice, Λ24,
the Leech lattice. For convenience, we say a vector
(v1, v2, . . . , vn) has shape (aj , bk, . . .) if vi = a for j
entries, vi = b for k entries, etc. In fact, the Leech
lattice can be generated by all vectors of the shape

1√
8
(∓3,±123),

where the ∓3 can be in any position and the up-
per signs are taken on a set of coordinates where
a codeword of G24 is one.

The Leech lattice has 196,560 shortest vectors of
length two: 97,152 of them have shape (016,±28);
98,304 of them have shape (±123,±3); and 1,104
of them have shape (022,±42). One might therefore
conjecture that Λ24 has a large symmetry group. In
1968 J. H. Conway determined this group, Co0. It is
generated by six elements and has order

|Co0| = 22239547211 · 13 · 23.
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More surprisingly, he discovered three new spo-
radic1 simple groups, Co1, Co2, and Co3, as
subgroups of Co0, where

|Co1| = 22139547211 · 13 · 23,

|Co2| = 21836537 · 11 · 23,
and

|Co3| = 21037537 · 11 · 23.
Let Bn denote the n-dimensional unit ball

centered at the origin, that is,

Bn = {x ∈ En : |x| ≤ 1};
let τ(Bn) denote its kissing number (the maximal
number of nonoverlapping unit balls that can simul-
taneously touch Bn at its boundary); and let τ∗(Bn)
denote its lattice kissing number. Since the length of
the shortest vectors inΛ24 is two, B24+Λ24 is a lattice
ball packing. Therefore we have

(1) τ(B24) ≥ τ∗(B24) ≥ 196560.

Let A(n,θ) denote the maximal number of points
on the surface of Bn with minimal spherical separa-
tion θ. Clearly we have

τ(Bn) = A(n,π/3).

For k = 0, 1, 2, . . ., let Pα,βk (t) denote the Jacobi
polynomial of degree k, where α > −1 and β > −1
are two parameters. These polynomials form an or-
thogonal basis for the space of all polynomials. In
the 1970s P. Delsarte et al. discovered the following
criterion: Write α = (n− 3)/2. If

f (t) =
k∑
i=0

fiP
α,α
i (t)

is a real polynomial such that f0 > 0, fi ≥ 0 for i = 1,
2, . . . , k, and f (t) ≤ 0 for −1 ≤ t ≤ cosθ, then

(2) A(n,θ) ≤ f (1)
f0
.

In 1978 V. I. Levenštein, A. M. Odlyzko, and N. J. A.
Sloane constructed such a polynomial f (t) for n =
24 and surprisingly obtained

(3) τ(B24) = A(24, π/3) ≤ 196560.

Then (1) and (3) together yield

τ(B24) = τ∗(B24) = 196560.

Moreover, as was shown by E. Bannai and N. J. A.
Sloane in 1981, the local kissing configuration of
B24 + Λ24 is the only optimal one for τ(B24), up to
isometry.

The problem of optimizing the upper bound in
(2) is unsolved in general and appears to be difficult.
However, there are simple choices of f (t) that ex-
actly solve the kissing number problem in both E8

1There are twenty-six sporadic simple groups. The first was
discovered in 1861 by E. Mathieu, and the last one, known
as the friendly giant or the monster, was constructed by
R. Griess in 1982 (see “What is the monster?”, by Richard
Borcherds, Notices, October 2002).

and E24. Perhaps the mystery lurking in the back-
ground is the uniqueness of the optimal configura-
tions.

Let δ(Bn) and δ∗(Bn) denote the densities of the
densest packings and the densest lattice packings of
Bn respectively. It can be verified that the determi-
nant of Λ24 is one and therefore the packing density
of B24 +Λ24 is π12/12!. Thus we have

δ(B24) ≥ δ∗(B24) ≥ π
12

12!
.

For a real function f (x) defined on En we define

f̂ (y) =
∫
En
f (x)e2πi〈y,x〉dx,

where 〈y,x〉 is the inner product of y and x, and i =√
−1. If there is a positive constant µ such that both
|f (x)| and |f̂ (x)| are bounded above by a constant
times (1+ |x|)−n−µ , we say f (x) is admissible.

In 2003 H. Cohn and N. D. Elkies proved the fol-
lowing criterion: Suppose f (x) is an admissible func-
tion defined on En that satisfies:
1. f (o) = f̂ (o),
2. f (x) ≤ 0 whenever |x| ≥ r , and
3. f̂ (x) ≥ 0 for all x ∈ En.
Then we have

δ(Bn) ≤ πn/2

(n/2)!

(
r
2

)n
.

Actually, this is a Euclidean analog of (2). Based
on this result, in 2009 H. Cohn and A. Kumar proved

(4)
π12

12!
≤ δ(B24) ≤

(
1+ 1.65 · 10−30

)
· π

12

12!
and

δ∗(B24) = π
12

12!
.

This time, up to symmetry, the Leech lattice again is
the only optimal 24-dimensional lattice for δ∗(B24).
Doubtless, given (4), everybody will bet on

δ(B24) = π
12

12!
.
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