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M
arshall Hall Jr. (1910–1990) is de-
servedly well remembered for his
role in constructing the simple group
of order 604800 = 27 × 33 × 52 × 7
as well as numerous advances in

combinatorics. A brief autobiography is on pages
367–374 of Duran, Askey, and Merzbach [5]. Hall
notes that Howard Engstrom (1902–1962) gave
him much help with his Ph.D. thesis at Yale in
1934–1936 and later urged him to work in Naval In-
telligence (actually in the foreign communications
unit Op-20-G).

I was in a research division and got to see
work in all areas, from the Japanese codes
to the German Enigma machine which Alan
Turing had begun to attack in England. I
made significant results on both of these
areas. During 1944 I spent six months
at the British Headquarters in Bletchley.
Here there was a galaxy of mathematical
talent including Hugh Alexander the chess
champion and Henry Whitehead the eminent
topologist…

Burroughs, Lieberman, and Reeds [2] clarified the
work of Op-20-G on the Enigma in a contribution
to the obituary of Andrew Gleason (1921–2008).
Unfortunately the surviving records scarcely allo-
cate credit to individuals. Hall was one of about
ten core members of a team of about thirty not far
from being another galaxy of mathematical talent.
See Christenson [3].
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The statistician Edward Simpson led the JN-25
team (“party”) at Bletchley Park from 1943 to 1945.
His now declassified general history [12] of this
activity noted that, in November 1943:

[CDR Howard Engstrom, U.S.N.] gave us
the first news we had heard of a method
of testing the correctness of the relative
setting of two messages using only the
property of divisibility by three of the code
groups [5-groups is the usage of this paper].
The method was known as Hall’s weights
and was a useful insurance policy just in
case JN-25 ever became more difficult. He
promised to send us a write-up of it.

The JN-25 series of ciphers, used by the Japanese
Navy (I.J.N.) from 1939 to 1945, was the most
important source of communications intelligence
to the WW2 Allies in the Pacific.

Alan Turing’s Work on Applied Probability
The centenary of the birth of Alan Turing (1912–
1954) was extensively publicized in the popular and
semipopular media. His contributions to applied
probability theory and the central role this played
in WW2 cryptology were substantially overlooked.
In fact, Jack Good published two papers ([6] and
[7]) which set out the technical aspects of his
work. Good had been Turing’s assistant for a while
in his Bletchley Park years. Some analysis of the
use made of this work in WW2 cryptology is now
possible.

The greatest achievement of WW2 Allied cryp-
tology was the breaking of the German encrypted
teleprinter (teletype, teletypewriter), called Tunny
by the cryptologists. Eventually this was handled
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by the celebrated Colossus device, an (almost) elec-
tronic machine that replaced the optical punched
tape-based Robinson. Good, Michie, and Timms [8]
wrote a detailed account of this achievement in
1945. For present purposes the key sentence is:

The fact that Tunny can be broken at all
depends upon the fact that P , χ, Ψ ′, K
and D have marked statistical, periodic or
linguistic characteristics which distinguish
them from random sequences of letters.

This report states elsewhere that the method
involved, using logarithmic Bayesian “weights”
and Turing’s decibans, originated in the Naval
Cryptology unit. Hugh Alexander in [1] leaves no
doubt as to who was the dominant figure in work
on Naval Enigma at Bletchley.

It is possible, but quite laborious, for anyone
with appropriate skills to extract from [8] the sub-
stance of Turing’s work on (Bayesian) probability
being applied to cryptology. However, the recent
declassification of his working paper [14] (circa
August 1941) on the subject helps considerably. A
useful commentary on this point has been written
by Zabell [16].

Andrew Hodges records on page 243 of his
well-known book [9] that, around December 1942,
Gleason and Turing were eating in a Washington
restaurant. They discussed:

…statistical problems, such as that of how
best to estimate the total number of taxicabs
in a town, having seen a random selection
of their licence numbers.

The theory needed for this “German tank” problem
is Bayesian. One may speculate that this led to the
initiative described by Ruggles and Brodie [10] in
1947:

In early 1943 the Economic Warfare Division
of the American Embassy in London started
to analyse markings and serial numbers
obtained from captured German equipment
in order to obtain estimates of German war
production and strength.

Ruggles and Brodie show that interest in this matter
was developing in the United States independently
of Turing. Gleason’s role in this matter is not
clear. In 1958–1960 I undertook the basic military
training then commonly available for Australian
boys aged fifteen to seventeen and was fascinated
by the range of information engraved on the WW2
rifles used.

The statistician Edward Simpson was transferred
to work on JN-25 at Bletchley Park in 1943. In 2010
he wrote an account [11] of this work, entitled
Bayes at Bletchley Park. It explains the role of some
of this material in decrypting Enigma traffic also.

The version of the Bayes Theorem needed for
assessing whether a potential decryption should

be accepted and also for Hall weights is as follows.
Suppose that it is known that exactly one of the
two hypotheses S and T is valid and independent
runs are made of an experiment whose output
is an element of a finite set K. It is known that,
if S holds, then for k ∈ K the probability of
the outcome being k is σk, while if T holds the
probability is τk. Suppose that the experiment is
runN =

∑
k nk times with nk occurrences of output

k. Let p0 denote the “prior” probability (before the
experiments) that S holds. Likewise let pN denote
the “posterior” probability (after the results of the
experiments are available) that S holds. Then

logβ (pN/(1− pN))

= logβ (p0/(1− p0))+
∑
k
nk logβ (σk/τk) .

Here the logarithms can be taken to any convenient
base β > 1. Once β is chosen, the logβ (σi/τi)
terms are known as “weights of evidence” or
just “weights”. Initially Turing advocated using
logarithms to the base β = 10

√
10 and named the

dimensionless unit of weight the “deciban”. These
were rounded to the nearest half. Later Good
pointed out that it was easier to take β = 20

√
10

and so to work with the half deciban or “hdb”.
Another option is to take β = 100

√
10 and thus use

the “centiban”. The lack of modern calculating
devices at the time made some rounding of the
logarithms essential.

In general it is clear from the formula that if p0

is quite small, then quite a lot of strong evidence
is needed to make pN large enough so that S is
highly likely.

Additive Ciphers. The JN-25 Systems
A description of the structure of the JN-25 cipher
systems is needed in any explanation of the task
faced by those trying to break them. The underlying
algebraic structure of an abelian group A (here
of order 100,000) and a subset S (here of order
33,334 and not invariant under all automorphisms
ofA) is quite unorthodox.

The word “group” was used in the communica-
tions community in the sense of a string of letters
or digits. These had a fixed standard length deter-
mined by the context. To avoid confusion, strings
of 5 digits are here called 5-groups. The setA of
5-groups has an evident abelian group structure
specified by what was then called “noncarrying” or
“false” addition.

There is a natural way to use 5-groups as
a reasonably secure communications system. A
list of words and/or phrases intended for use is
prepared. A different 5-group, the code 5-group,
is allocated to each. A long random table (the
“table of additives”) of 50,000 (say) 5-groups is
generated somehow and copied out on 500 serially
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numbered pages with ten rows each of ten of
these 5-groups on each page. (This note uses the
word “random” loosely. All the underlying sample
spaces are finite.) The message is written out
in plain language on the first of four lines of a
suitable form. The corresponding code 5-groups
are written out on the line immediately below.
A starting 5-group in the table of additives is
randomly chosen. Consecutive 5-groups from the
table beginning at the chosen 5-group are then
written out on a third line, and the noncarrying
sums (“code” + “additive”) are then calculated
and written on the fourth line. These were called
GATs, or 5-Groups As Transmitted. The proposed
recipient would need to be able to reverse this
process and so needed to be able to recover the
starting point. Information for this purpose was
called the indicator or indicators and was sent
as part of the message encoded, encrypted, or
perhaps concealed among the GATs. Better still,
two or all three of these methods of keeping the
indicator secure would be superimposed.

The security of such a cipher system depends
upon the indicators being unbreakable, the table
of additives being replaced reasonably frequently,
and the code book being replaced perhaps rather
less often. The frequencies of occurrence of the
common code 5-groups should be reduced by
allocation of alternative code 5-groups to common
words and/or phrases in use. Ideally there would
be calculation of the maximum secure life of these
systems. In practice, distribution of replacement
cipher material presented problems. An army in
retreat would sometimes allow its cryptographic
material to be captured. Dice or suchlike were little
used in the making of “random” choices, and so
these choices were much less random than they
should have been.

The allocation of code 5-groups is best done
in a patternless or random way. The I.J.N. did
not choose its JN-25 code 5-groups randomly but
instead limited itself to scannable 5-groups. In the
U.S.N. jargon of the day, a 5-group was said to be
scannable if the sum of its digits was a multiple
of three. The subset S ⊂ A of scannable 5-groups
has 33,334 elements. Simpson used the alternative
phrase “divisible by three”.

Initially we assume that the indicator system
of the JN-25 cipher under attack can be decoded,
decrypted, or located as may be necessary. (As
this was the case in November 1943, the theory of
Hall weights was just an “insurance policy” being
kept in reserve.) It is then possible to have 1,000
large pieces of paper (“depth sheets”) printed with
fifty reasonably wide columns and perhaps thirty
rows on each. This gives 50,000 columns, one for
each 5-group in the table of additives. Intercepted
messages can then be written out on a line with

each GAT in the appropriate column. The task is
now recovery of the additive involved.

The word “column” was sometimes replaced
by “depth”: the intercepted signals were then said
to be “placed in depth”. Confusingly, the word
“depth” was also used for the number of different
GATs in a column. A column would thus contain N
distinct 5-groups x1,x2, . . . ,xN where xk = yk + a
and where yk is scannable for 1 ≤ k ≤ N and a is
an unknown 5-group. If d denotes the depth, then
N ≤ d. Occasionally duplication (a “hit” or “click”)
occurred and then N < d.

A potential decryption is then any 5-group b such
that xk − b is scannable for each k. Anachronistic
large-scale random sampling shows that for various
N (line 1 in the table below) the probability UN
that a column with N distinct GATs has a unique
potential decryption, the average number AN of
potential decryptions, and the least number LN
such that 90% of samples have at most LN potential
decryptions are shown on lines two, three, and
four respectively.

N 7 8 9 10 11 12 16 20
UN 0% 0% 1% 3% 6% 11% 42% 68%
AN 148 73.2 38.4 21.7 13.3 8.6 2.7 1.6
LN 318 164 87 49 30 19 5 2

Hence only 68% of columns with twenty distinct
GATs can be deciphered in isolation. However, what
can be done in attacking a new JN-25 system is to
examine those columns containing sixteen or more
distinct GATs to identify which of these have unique
decryptions. This gives provisional statistics on
the frequency of occurrence of common code
5-groups to the cryptologists, who would have
had some, admittedly imprecise, knowledge of the
above table. Details on how to get started on a new
JN-25 system are slurred over here. This phase
would then work on the columns of greater depth
to select potential decryptions b for which several
of the “stripped” 5-groups xi − b are common.

Turing’s 1941 exposition [14] on the use of
probability theory in cryptanalysis compares the
general task of finding the correct decryption to
looking for a needle in a haystack. The limitation
that all code 5-groups are scannable reduced the
size of the haystack (if, for example, N = 10,
the haystacks average 21.7 potential decryptions
rather than 100,000) and so materially helped with
the logβ (p0/(1− p0)) term in the Bayes formula.

My paper [4] describes how, between August
1939 and February 1940, Turing and a few col-
leagues assisted in developing a method to discover
potential decryptions of columns of smaller depth
that contain common decrypted 5-groups xi − b.
In fact, there is another method which (usually)
was more productive. Turing was involved in early
1940 in designing the first version of a special
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purpose desk calculator for handling the search
for potential decryptions. By December 1942 the
U.S.N. had an elaborate powered version (the “fruit
machine”) being manufactured in Dayton, Ohio.
The paper gives a contrived example of one use
of such a device. The following text in a report
(December 1942) was written by Turing and quoted
in [4]:

SUBTRACTOR MACHINE. At Dayton we also
saw a machine for aiding one in the recovery
of subtractor [5-]groups when messages
have been set in depth. It enables one to set
up all the cipher [5-]groups in a column of
the material, and to add subtractor 5-groups
to them all simultaneously. By having the
digits coloured white, red or blue according
to the remainders they leave on division by
three it is possible to check quickly whether
the resulting book [code] [5-]groups have
digits adding up to a multiple of 3 as they
should with the cipher to which they will
apply it most. A rather similar machine was
made by Letchworth for us in early 1940,
and, although not nearly so convenient as
this model, has been used quite a lot I
believe.

The naval facility in Pensacola, Florida, has a
display (small museum) which has one of these
fruit machines. The words “I believe” here refer to
work carried out in Singapore, later Manila, and
later still elsewhere and so not readily accessible to
Turing. Yet he was kept informed to some extent.

The admittedly minimal evidence of Turing’s
involvement is not restricted to this text. The senior
cryptologist John Tiltman (1894–1982), heading
the first team working on JN-25, did write up some
reminiscences [13] for the internal use of the NSA.
These include:

I have no knowledge of higher mathematics
and my grasp of probability is instinctive
and quite unsound, but I am not too proud
to ask for help and, when I have done so,
have not often been misled.

Turing’s report shows incidentally that the
Bletchley Park mathematicians missed the use of
colored background in speeding up the determina-
tion of divisibility by three. The aim is to arrange
things so that the number of reds is congruent
modulo 3 to the number of blues in each sum
5-group. This is somewhat reminiscent of the task
of being given a graph drawn on a sphere with
three edges meeting at each node, allocating a
color (either red or blue) to each node so that the
number of red nodes on the boundary of each face
is congruent modulo 3 to the number of blue nodes.
This task is a variant of the four-color theorem!
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“Fruit machine” displayed in Pensacola, Florida.

Breaking a Cipher Piece by Piece
Turing’s report [14] discusses in detail the breaking
of a cipher piece by piece rather than attempting to
get the full solution in one calculation. This is the
strategy implicit in the device mentioned above.
It uses pre-existing knowledge of the common
code 5-groups. The cryptologist would attempt to
recover the original code 5-groups by finding the
additive for each column. The task of recovering
the plain language corresponding to a given code
5-group would be carried out one by one.

Passing by the methods of finding reasonable
potential decryptions, the question remains, when
should a potential decryption of a column of depth
d = 10 (say) be accepted? There was considerable
urgency at the time. It was accepted that a
(hopefully) modest proportion of decryptions
would be wrong, but (hopefully) most of these
would be corrected when further messages using
that part of the additive table turned up. It
seems that the clerical staff used simple scoring
systems such as: “For depths of ten, accept any
potential decryption that yields at least three
points. Here a point is awarded for each of the one
hundred most common code 5-groups appearing
in the proposed decryption and for each piece of
horizontal evidence obtained.” In this reasoning
the occasional duplicating GAT in a column is
not disregarded but instead contributes to the
calculated score.

A typical piece of “horizontal” evidence arises
when the previous column has been decrypted
with the common code 5-group 12345 being found.
It is known that the common code 5-group 45678
often follows 12345 in signals. Hence a potential
decryption in which 45678 occurs immediately to
the right of 12345 is more likely to be correct.
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One could argue that a better scoring system
would award three points for any decrypted code
5-group in the most common twenty, two for
any decrypted code group in the next twenty,
one for common code 5-groups from forty-one
to one hundred, and two for strong horizontal
evidence. The word weight was used for a number
of points in such a system. The threshold “at least
three points” would then need adjustment. Any
proposed scoring system for depths of (say) ten
could be tested on the top ten GATs in columns
with (say) sixteen or more GATs for which the
correct decryption is known with high reliability.

Turing may well have sought rationality behind
such scoring systems in 1940 and 1941, eventually
producing the extremely important use ([11] and
[14]) of Bayesian methods in cryptology. Of course
any reconstruction of the thought processes that
resulted in [14] is totally speculative. Quite inde-
pendent work on sequential analysis was going
on elsewhere. For example, Abraham Wald’s 1945
paper [15] describes work carried out in 1943 and
contains (page 121) the remarkable paragraph:

Because of the substantial savings in the
expected number of observations effected
by the sequential probability ratio test, and
because of the simplicity of this test in
practical applications, the National Defense
Research Committee considered these de-
velopments sufficiently useful for the war
effort to make it desirable to keep these
results out of the reach of the enemy, at
least for a certain period of time. The au-
thor was, therefore, requested to submit
his report in a restricted report which was
dated September 1943. In this report the
sequential probability ratio test is devised
and its mathematical theory is developed.

The above discussion disregards the matter
of getting started on a new JN-25 system. Here
analysis of the initial traffic cannot be carried out
piece by piece. One method is to accumulate depths
which have unique decryptions and use them to
get information on the common code 5-groups. It
is in fact possible to use about seventy columns of
depths at least thirteen to get an initial impression
of what are the common code 5-groups. This
depends upon the frequencies of occurrence being
reasonably close to what happened historically.
The details are not given here. Upgrading the
statistics as more and more columns are decrypted
must have been an essential part of the process.

Bayesian Methods in Decrypting JN-25
Columns
In this section K is the set of 33,334 scannable
5-groups. Hypothesis T is “the potential decryption

is incorrect,” and so the τk are all equal; indeed
τk = 1/33334 for all k. For the one hundred
(or thereabouts) most frequently occurring code
5-groups k, the frequency σk is taken to be that
obtained from decryptions already made. For other
scannable 5-groups k the observed frequency
would be a less reliable statistic. It was found
easiest to just take σk = 1/33334 for such k:
at least this avoided the need to calculate with
negative weights.

General reference needs to be made to Edward
Simpson’s 2010 account [11] of work carried out at
Bletchley Park in 1943–1945 decrypting columns
of JN-25 with depths as low as six. In essence it
used the above method of exploiting the available
data.

The anonymous NARA archive RG0457, entry
A1 9032, box 578, file 1391 of March 1945 gives
information on the success in attacking various JN-
25 systems. Code book B was used in conjunction
with additive table 7 from August 1, 1941, to
December 3, 1941, that is, in the four months
leading up to the raid on the Pearl Harbor Naval and
Air Force facilities. It is noted that this combination
(JN-25B7) received quite heavy use. Joint work
between the American naval unit “Cast” in the
Philippines and the British unit FECB in Singapore
managed to recover 35,761 additives out of 50,000.
The report notes that some of the 35,761 would
be incorrect. The combination JN-25B8 (December
4, 1941, to May 27, 1942) had been attacked by the
unit at Hawaii as well, and so 47,340 additives had
been recovered.

Hall Weights
The Hall weights originate in the observation that, if
the characteristic χ(abcde)of the 5-groupabcde is
defined to be a+b+c+d+e interpreted modulo 10,
then the proportions qj of scannable 5-groups with
characteristic j are far from equal. Indeed, careful
calculation reveals that q9 = q6 = 925/33334,
q2 = q3 = 1780/33334, q5 = q0 = 3247/33334,
q8 = q7 = 4840/33334, q1 = q4 = 5875/33334. It
is far from clear why Hall or anyone else thought
that this was worth examining.

The real-valued function j , qj defined on the
cyclic group of order 10 necessarily has a 10-term
expansion in terms of sines and cosines. The
functional equation qj = q5−j implies that five of
these terms are zero. Simple calculation yields the
following, which is correct to five decimal places:

qj ≈ .10000− .00007 cos(2πj/5)
− .00250 cos(4πj/5)− .00001 sin(πj/5)
+ .07808 sin(3πj/5).

The approximate formulaqj≈.100+.078 sin(3πj/5)
is too attractive to be left out of this account.
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Suppose d is reasonably large, say d > 16;
yk, 1 ≤ k ≤ d, are randomly chosen scannable
5-groups; and a is a randomly selected 5-group.
Then the distribution of values of the χ(yk + a)
may be calculated and expanded in terms of sines
and cosines. The coefficients of cos(3πj/5) and
sin(3πj/5) may then be used to indicate the most
likely value(s) of χ(a). One can use a table of
values of the inverse tangent function to assist in
decryption!

The formula χ(x+ a)− χ(y+ a) = χ(x)− χ(y)
motivates the calculation of the probability σk of
the difference χ(x)− χ(y) being k as x and y vary
over the 33,3342 possible pairs (x,y). These are
rational numbers with denominator 33,3342 given
as the sums

∑
j qjqk+j . The functional equation

σk = σ−k is then implied by the earlier qn = q5−n.
The values of σk are then given to six decimal
places in the second column of either table below.
In the previous notation S is the hypothesis that
two intercepts are in alignment, while T is the
hypothesis that they are not. The set K is now the
set of ten digits and τk = 1/10 for all k in the
above logarithmic Bayes formula.

k= 0 0.130510 2.31288 2
1, 9 0.090556 -0.86162 -1
2, 8 0.075352 -2.45808 -2
3, 7 0.124667 1.91503 2
4, 6 0.109393 0.77980 1
5 0.069553 -3.15368 -3

The third column in this table gives the Hall weights
logβ(10σk) in half decibans (so with β = 20

√
10),

while the fourth gives rounded values of these.
These roundings lose quite a lot of precision.

k=0 0.130510 30.0009 30
1, 9 0.090556 -11.1762 -11
2, 8 0.075352 -31.8843 -32
3, 7 0.124667 24.8403 25
4, 6 0.109393 10.1148 10
5 0.069553 -40.9070 -41

In this table β is taken to be exp(3/338). The
third column in the right-hand table gives instead
(338/3) log(10σk), and the rounded values are
given in the fourth column. Much less precision
is lost. The choice β = exp(3/338) may be more
aesthetic than historical.

Now suppose we are trying to test “the correct-
ness of the relative setting of two messages using
only the property of divisibility by three of the code
5-groups.” So here the two messages are written
out on successive lines of a form, one directly
below the other. There are two hypotheses: S being
that the relative setting is correct and T being
that it is incorrect. If S holds, then the probability
that χ

(
(x+ a)− (y+ a)

)
= χ(x)− χ(y) = k is σk,

while otherwise—that is, if T holds—it is just 1/10.
At one stage in 1944 it was possible to work out
the page part of the current JN-25 indicators but
not the line or column part. Thus we now assume
that the two messages which are being tested for
correct alignment were encrypted starting on the
same page of the table of additives. As there was a
bias towards starting on the left half of the page
and also a bias towards starting on the top half, the
initial p0 in the formula is about 2/100 rather than
1/100. Thus the logarithmic prior term is about
(338/3) log

(
(1/50)/(49/50)

)
≈ −438, and so the

Hall weight formula has the totally surprising
Diophantine approximation

(338/3) log (pN/(1− pN))
≈ −438+ 30n0 − 11(n1 + n9)− 32(n2 + n8)
+ 25(n3 + n7)+ 10(n4 + n6)− 41n5.

In practice the staff working with this formula
would be given just a threshold, that is, a minimum
acceptable value for the expression 30n0 + . . . −
41n5.

The initial deficit of −438 looks somewhat
daunting, but the last paragraph glosses over the
true situation. The aim is not to set two JN-25
messages in alignment, but rather at least six
messages and hopefully at least seventeen if the
decryption process is ever to get started. Another
circumstance would be the discovery of two signals
with “double hits”, that is, the same pair of GATs
occurring in each separated by the same number of
other GATs. The Copperhead I device searched for
double hits, which would make the “correctness
of the relative setting” much more likely. This is
not the place to develop a detailed account of the
theory.

The operators handling JN-25 encryption in
WW2 were instructed to tail , that is, to choose the
starting point for the first signal in a new additive
table randomly and then start each subsequent
encryption immediately after the previous one
finished. However, not all of them read the in-
structions. Once detected, this practice helped the
cryptologists both with breaking indicator encryp-
tion systems and with getting long concatenations
of intercepts to put in depth.

The reader seeking a challenge may wish to
work out the appropriate modifications of these
calculations if, instead of using only multiples of
three, the I.J.N. had used only multiples of nine or
multiples of eleven.

The Historical Significance
This note has avoided much historical detail
about JN-25. For example, the 1945 report HW
43/34 on the system JN-25L53 in the British
National Archives has over one hundred pages

March 2014 Notices of the AMS 263



and includes a glossary (of jargon). The authors
were J. W. S. Cassels and E. H. Simpson. It has also
slurred over the difference between Hall weights
and the associated Shinn weights. However, much
of the more important mathematical aspects are
mentioned above.

The decryption and decoding of JN-25B in 1941–
1942 undoubtedly turned around the naval war in
the Pacific. Decryption of Enigma was extremely
useful in the air battle over Britain and later in the
Battle of the Atlantic. Also, the 1944 invasion of
Normandy needed confirmation from high-level
encrypted teleprinter traffic that the deception
activities had in fact succeeded. Turing’s work on
Bayesian methods in cryptology permeated all of
these activities.

Another well-known “insurance” discovery of
the era did pay off handsomely. In February to April
1940 at Bletchley Park the talented mathematics
student John Herivel developed a technique to
recover likely settings of the Enigma encryption
machine then used by the German Army and Air
Force. This was not needed while an unsound
indicator encryption practice was in use but
came into its own in May 1940. The “bombe”
device, designed by Turing and Gordon Welchman
following an earlier Polish version, took over four
months later. Meanwhile the Battle of Britain had
to be fought.

The “insurance policy” of Hall weights became
“useful” in 1944, and by then the U.S.N. had a
massive preponderance on, under, and over the
Pacific Ocean. Getting back into JN-25 without
reading the indicators was very slow work. In
general, JN-25 was much less productive as a
source of intelligence in 1944–1945. However, Hall
weights were an elegant method that did help in
detecting alignments. Hall was justified in calling
them a “significant contribution”.

The Recordsearch facility of the National
Archives of Australia may be used to locate
and read online a report entitled Japanese Naval
Order of Battle compiled in June 1944 by the Joint
Intelligence Center Pacific Ocean Area, a predeces-
sor of the NSA based in Hawaii. This document
contains around ninety-five pages of information
assembled by the center, mostly from intercepted
radio communications.
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