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Introduction
The profound implications of teachers’ mathe-
matical knowledge for the quality of the learning
opportunities that teachers can offer to their
students (e.g., [2]) justifies, at least in part, the
growing research focus on teachers’ mathematical
knowledge. This research has given rise to the
notion of Mathematics for Teaching (MfT) [3], [4],
which describes the body of mathematics that is
important for teachers to know in order to be able
to successfully manage the mathematical demands
of their professional practice, i.e., teaching mathe-
matics to children. This is contrasted, for example,
with the mathematics that is important for other
professionals such as engineers and physicists
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whose work also imposes specific mathematical
demands. Of course there is overlap between the
mathematics that is important to different work-
places. Yet there are also certain mathematical
ideas or ways of knowing and knowing how to use
these ideas that are more relevant to one workplace
than to another.

In this article we discuss a conceptualization
whereby MfT is thought of as a form of applied
mathematics, and we probe the implications of
this conceptualization for the mathematical prepa-
ration of teachers. We also relate our discussion
of MfT as a form of applied mathematics to how
Hyman Bass and Zalman Usiskin used the notion of
“applied mathematics” to think about mathematics
education or the mathematical preparation of
teachers.

Exemplifying Knowledge of Mathematics
for Teaching
We begin with a classroom scenario that we use
to exemplify elements of knowledge of MfT in the
particular domain of proof.

Classroom scenario:
A seventh-grade class was reviewing meth-
ods for finding a fraction between any two
given fractions that are not equivalent and
can be located on the positive part of the
number line. At one point during the lesson,
a student in the class, Mark, announced
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proudly his discovery of the following gen-
eral method for finding a fraction between
any two such fractions:

To find the numerator of a fraction
that lies between any two given
fractions on the number line, you
simply add the numerators of the
two given fractions. To find the
denominator, you simply add their
denominators.

Mark illustrated his method with an example,
which is shown in Figure 1. He also clarified
that his method gives one out of many
possible fractions between any two given
(positive and nonequivalent) fractions.

The other students in the class were
amazed with the method, tested it with
lots of examples, and saw that it worked
in every case they checked. Then many
students became convinced that Mark’s
method works for any pair of fractions. One
of them, Jane, asked the teacher:

Can we use this method every time
we need to find a fraction between
two given positive fractions?

The teacher found herself in a difficult
situation: this was the first time that she
had seen the method and was not sure how
to respond to Jane’s question.

A major mathematical issue that arose for the
teacher in the scenario was whether it would
be mathematically appropriate for the students
in the class to use Mark’s method to find a
fraction between any two given positive and
nonequivalent fractions. The teacher was seeing
this method, which draws on the mediant property
of positive fractions, for the first time. The teacher’s
mathematical knowledge could shape the course
of action she would follow in the classroom
scenario, which in turn would influence students’
opportunities to learn mathematics. Consider,
for example, the following two possibilities that
originate from two different elements of knowledge
that the teacher could possess.

Possibility 1:

A possible element of the teacher’s math-
ematical knowledge (misconception): If a
general method is found to work for many
different cases (a proper subset of all possi-
ble cases), then the method can be accepted
as correct.

→ Course of action: The teacher con-
siders Mark’s method to be correct and says
to Jane and the rest of the class that they
can use the method every time they need to
find a fraction between two given positive
and nonequivalent fractions.

→Students’ opportunities to learn
mathematics: The students add a new
method to their “toolkit” (which happens to
be correct), but they are led to develop or
continue to hold the same misconception
as their teacher.

Possibility 2:

An alternative possible element of the
teacher’s mathematical knowledge (sound
conception): Unless a general method is
proved to work for all possible cases, the
method cannot be accepted as correct.

→ Course of action: The teacher says
to Jane and the rest of the class that even
though Mark’s method worked in all the
cases they checked, there are infinitely many
pairs of fractions and so the examination of
some of these pairs offers no guarantee that
the method will work for all possible cases.
Also, the teacher invites the students to join
her in thinking more about the method to
see whether they can prove that the method
works for all possible cases.

→ Students’ opportunities to learn
mathematics: The students are exposed to
the mathematically sound idea that the
confirming evidence offered by some cases
is not enough to establish the correctness
of a general method. Also, the students
engage with their teacher in an exploration
that can potentially lead to the development
of a proof for the method. If a proof is
developed, the students can add the method
to their “toolkit”; otherwise, the class would
treat the method as a conjecture.

Prior research (e.g., [5], [6]) shows that many
teachers have the misconception described in
possibility 1, namely, that examination of a proper
subset of all the possible cases constitutes a proof
of a general method. Prior research shows further
that many students of all levels of education have
the same misconception (see [7] for a review of
some of this research). Possibility 1 illustrates
how a teacher’s misconception can generate or
reinforce the same misconception among students,
while possibility 2 illustrates how a sound con-
ception could allow a teacher to offer to students
learning opportunities to develop the same sound
conception. The sound conception in possibility 2
is “fundamental” [2] in the sense that it can apply
to the mathematical work of all students (including
young children) and contains the rudiments of
more advanced mathematical issues (notably, what
counts as evidence in mathematics).

Given the important implications that posses-
sion by the teacher of this sound conception
could have for students’ opportunities to learn
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I begin with two positive fractions, say 1
 
2

 and 3
4

.

To find a fraction between these two fractions I do the following:

    1
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 ++ 3
4 

= 4
6

I use the number line to show that my method worked:

4
6

 is between 1
2

 and 3
4

.
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Figure 1. A student’s illustration of a method for
finding a fraction between two given positive

and nonequivalent fractions.

mathematics, we can consider the conception to
be an element of knowledge of MfT [8]. Note that
we do not suggest that knowledge of the mediant
property of positive fractions should also be an
element of knowledge of MfT. Although knowledge
of this property would likely help the teacher deal
with the particular classroom scenario, it is not
the kind of “fundamental” knowledge that could
have high currency in the work of mathematics
teaching.

Of course the element of mathematical knowl-
edge in possibility 2 is important for effective
functioning not only in teaching but also in other
workplaces. Thus, this element is not unique to
knowledge of MfT. A related element that is more
relevant to teaching than to other workplaces
that use mathematics is knowledge of an actual
proof of Mark’s method that would be not only
(a) mathematically valid but also (b) pedagogically
appropriate for use with seventh-graders. Indeed, a
physicist or an engineer would likely be concerned
only with the mathematical validity of the proof,
while a teacher would have to consider also issues
such as students’ prior knowledge and whether, for
example, an algebraic proof would be accessible to
them. Later we will revisit the classroom scenario,
and we will discuss different possible proofs that
could meet both requirements.

Our previous discussion illustrates the point
that a teacher’s mathematical knowledge cannot
generally function in isolation from pedagogi-
cal considerations and, by implication, university
mathematics courses for prospective teachers can-
not lose sight of the domain of application of the
targeted knowledge (i.e., mathematics teaching).

This should not be interpreted as a suggestion
to compromise the mathematical focus of math-
ematics courses for prospective teachers. On the
contrary, we are strong believers that the focus
in these courses should remain on mathematics.
Our interest is in how to best promote prospec-
tive teachers’ learning of mathematics in these
courses, and, in this regard, we suggest that at least
part of prospective teachers’ learning experiences
should be contextualized in pedagogical situations,
thereby fostering connections with the domain of
application of the intended learning.

Conceptualizing Mathematics for Teaching
as a Form of Applied Mathematics
Hyman Bass and Zalman Usiskin both used the
notion of “applied mathematics” in discussing,
respectively, “mathematics education” and “teach-
ers’ mathematics”. Hung-Hsi Wu also discussed
relevant ideas, though he used the notion of
“mathematical engineering” instead of “applied
mathematics”. Below we briefly present the views
of these researchers and use them to situate our
proposal in this article to view MfT as a form of
applied mathematics.

Bass [9] suggested that we view mathemat-
ics education as a form of applied mathematics:
“[Mathematics education] is a domain of profes-
sional work that makes fundamental use of highly
specialized kinds of mathematical knowledge, and
in that sense it can… be usefully viewed as a
kind of applied mathematics” (p. 418).1 Wu [10]
expressed a somewhat similar idea when he argued
that “mathematics education is mathematical engi-
neering, in the sense that it is the customization of
basic mathematical principles to meet the needs of
teachers and students” (p. 1678). In his view, the
customization of mathematics needs to happen
before the mathematics can be applied in the
work of teaching. It seems to us that Wu’s notion
of engineering relates primarily to curriculum
development, whereas Bass’s notion of applied
mathematics is concerned mainly with the practice
of teaching and its mathematical demands.

Zalman Usiskin [11], [12] has also discussed
the notion of applied mathematics, but, contrary
to Bass [9], he has done so in the context of
what he calls “teachers’ mathematics”. Usiskin [11]
discusses eight aspects under “teachers’ mathemat-
ics”: “(a) ways of explaining and representing ideas
new to students, (b) alternate definitions and their
consequences, (c) why concepts arose and how they

1Although this quotation is dated 2005, Bass has discussed
the idea of viewing mathematics education as a form of ap-
plied mathematics in public talks since the 1990s. Wu [10]
notes, for example, that Bass lectured on this idea in 1996.
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have changed over time, (d) the wide range of ap-
plications of the mathematical ideas being taught,
(e) alternate ways of approaching problems with
and without calculator and computer technology,
(f) extensions and generalizations of problems and
proofs, (g) how ideas studied in school relate to
ideas students may encounter in later mathematics
study, and (h) responses to questions that learners
have about what they are learning” (p. 3). Although
Usiskin’s notion of “teachers’ mathematics” is
certainly not unrelated to the notion of MfT as we
described it earlier in this article, the connections
between Usiskin’s “teachers’ mathematics” and
pedagogy are mainly curricular and not so much
about teaching and its mathematical demands, as
is the case in MfT. For example, the list (a)–(h) of
aspects of “teachers’ mathematics” includes only
one item, (h), that specifically refers to teaching.

In thinking about the mathematical preparation
of teachers, we were inspired by Bass’s use of “ap-
plied mathematics”.2 Yet, given that mathematics
education in general and the work of mathematics
teaching in particular make use of specialized
kinds of knowledge from several other fields in
addition to mathematics (psychology, sociology,
etc.), we propose to use the characterization “form
of applied mathematics” in reference to the math-
ematical component of teachers’ work (i.e., MfT)
rather than to mathematics education in general,
as Bass used it. Traditionally, the term “applied
mathematics” has been associated with the use
of mathematical knowledge in particular domains
of professional work, such as those that relate to
engineering and physics. Our use of this term for
the domain of professional work that relates to
mathematics teaching aims to extend rather than
change its traditional meaning.

Our proposal to conceptualize MfT as a form
of applied mathematics is partly motivated by the
fact that the conceptualization has two important
implications for the mathematical preparation of
teachers. These implications, which we describe
next, are aligned with existing research in this area.

First, the conceptualization implies that the
mathematical preparation of teachers should take
seriously into account the idea that “there is a
specificity to the mathematics that teachers need
to know and know how to use“ ([13], p. 271) as com-
pared to the mathematics that other professional
users of mathematics need to know and know how
to use. This point was illustrated earlier when we
talked about mathematical knowledge needed to
develop a proof of Mark’s method that would also
be accessible to seventh-graders: knowledge of

2Only recently did we learn about Usiskin’s use of “ap-
plied mathematics”. We thank the anonymous referee who
brought this work to our attention.

such a “pedagogically situated” proof would be
crucial for the teacher in the classroom scenario
but not so much for a physicist or an engineer who
may have an interest in the same method.

Second, the conceptualization implies that the
mathematical preparation of teachers should aim
to “create opportunities for learning subject matter
that would enable teachers not only to know, but to
learn to use what they know in the varied contexts
of [their] practice” ([3], p. 99). In other words, the
conceptualization underscores the importance of a
“pedagogically functional mathematical knowledge”
(ibid., p. 95) which can support teachers to suc-
cessfully address mathematical issues that arise
in their work, such as mathematical evaluation
of a novel student method or the generation of a
“pedagogically situated” proof, as illustrated in our
discussion of the classroom scenario.

To recap, the conceptualization of MfT as a
form of applied mathematics necessitates that
mathematics courses for prospective teachers
design opportunities for prospective teachers to
learn and be able to use mathematical knowledge
from the perspective of an adult who is specifically
preparing to become a teacher of mathematics.
But how might such learning opportunities be
designed? Next we discuss a special kind of
mathematics task that we call Pedagogy-Related
mathematics tasks (P-R mathematics tasks), which
we used in our courses with prospective teachers
to support their learning of MfT. We do not suggest
that P-R mathematics tasks are the only or the best
kinds of tasks for promoting learning of MfT. Yet,
we claim that P-R mathematics tasks can support
productive learning opportunities for prospective
teachers to develop the mathematical knowledge
that they need for their work and that such tasks
should not be overlooked in the mathematical
preparation of teachers.

Pedagogy-Related Mathematics Tasks:
A Vehicle to Promoting Knowledge of
Mathematics for Teaching
In this section we discuss the notion of P-R
mathematics tasks as a vehicle to promoting
knowledge of MfT. Specifically, we discuss two
main features of P-R mathematics tasks that
collectively distinguish P-R mathematics tasks
from other kinds of mathematics tasks.

As an example of a P-R mathematics task,
consider the following question in relation to the
classroom scenario described earlier:

What would be a mathematically appropri-
ate way in which the teacher could respond
to Jane’s question about whether the class
could use Mark’s method every time they
had to find a fraction between two given,
nonequivalent positive fractions?
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Figure 2. An algebraic proof of a general method
for finding a fraction between two given positive

and nonequivalent fractions.

We will henceforth refer to this task as the Fractions
Task. A solution to the Fractions Task would build
on the “course of action” that we discussed
earlier under possibility 2, which is the desirable
possibility. According to this course of action, the
teacher would engage the class in the discussion
of a proof that would not only be valid but also
accessible to the group of seventh-graders.

Feature 1: A mathematical focus
P-R mathematics tasks have a mathematical fo-

cus that relates to one or more mathematical ideas
that theory, research, or practice suggested are
important for teachers to know. The mathematical
focus is intended to engage prospective teachers
in mathematical activity. In the Fractions Task, the
mathematical focus is the mathematical evalua-
tion of Mark’s method, which can be expressed
algebraically as follows:

Given two fractions
a
b

and
c
d

(
where a, b, c, d > 0

and
a
b
<
c
d

)
,
a
b
<
a+ c
b + d <

c
d
.

Feature 2: A substantial pedagogical context
In addition to the mathematical focus, a P-R

mathematics task has a substantial pedagogical
context that is an integral part of the task and
essential for its solution. The pedagogical con-
text situates prospective teachers’ mathematical
activity in a particular teaching scenario and helps
prospective teachers engage with the mathematics
from the perspective of a teacher.

In the Fractions Task the pedagogical context
describes the teacher’s need to formulate a re-
sponse to Jane’s question about whether the class
could use Mark’s method when asked to find a

fraction between two positive and nonequivalent
fractions. According to this context, the event
happened in a seventh-grade class, which allows
the solvers of the task (prospective teachers) to
make certain assumptions about what the students
in the class might know or be able to understand.
Thus a solution to the task must not only satisfy
mathematical considerations but also needs to
take into account pedagogical considerations. Next
we discuss four points related to feature 2 of P-R
mathematics tasks.

First, the pedagogical context in which a P-R
mathematics task is situated determines to a great
extent what counts as an acceptable/appropriate
solution to the task, because it provides (or
suggests) a set of conditions a possible solution to
the task needs to satisfy. In the Fractions Task, for
example, an algebraic proof of Mark’s method like
the one in Figure 2, though mathematically valid,
would likely not be within the conceptual reach
of students in a seventh-grade class. A proof can
only be useful to students if it is understandable
to them. It is up to the teacher to decide whether,
given students’ prior knowledge and any national
curricular expectations, it would be sensible to
engage the class in the development of a different
proof that could be more accessible to students.

A potential proof of the inequality a
b <

a+c
b+d <

c
d

that invokes an argument from physics would
likely have stronger explanatory power and be
more accessible to students than the algebraic
proof. Consider, for example, the distance-time
graph in Figure 3, with the fractions a

b , cd , and a+c
b+d

representing respectively the following speeds: the
constant speed for covering distance a in time
b, the constant speed for covering an additional
distance c in time d, and the average speed for
covering the entire distance (a+ c) in time (b+d).
The smaller the fraction the smaller the speed,
and so the fact that a

b is smaller than c
d implies

that the constant speed for covering distance a
is smaller than the constant speed for covering
distance c; this is illustrated by the smaller slope
of OP as compared to the slope of PQ in the figure.
The average speed for covering the entire distance
(a+ c) in time (b+d) should be: (1) bigger than a

b ,
because, otherwise, a smaller distance than (a+ c)
would be covered in time (b + d); and (2) smaller
than c

d , because, otherwise, distance (a+ c) would
be covered in less time than (b+d). Thus it follows
that a

b <
a+c
b+d <

c
d .

Another possible argument for the inequality
a
b <

a+c
b+d <

c
d that could possibly be more accessible

to students than the algebraic proof might consider
that the fractions a

b and c
d represent ratios, say the

ratios of the number of a student’s correct answers
in tests 1 and 2 over the number of questions in
each test (ab and c

d , respectively). The fact that a
b is
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smaller than c
d implies that the ratio of the number

of correct answers over the number of questions
in test 2 was bigger than the corresponding ratio
in test 1. After applying reasoning similar to the
one in the context of the “distance-time” graph
here, one can conclude that the ratio of the total
number of the student’s correct answers in the
two tests over the total number of questions in the
two tests (i.e., a+cb+d ) has to be bigger than the ratio
in test 1 (i.e., ab ) and smaller than the ratio in test
2 (i.e., cd ).

Second, it is hard to describe precisely the
pedagogical context of a P-R mathematics task:
given the complexities of any classroom situation,
it is impractical (perhaps impossible) to describe
all the parameters of the situation that can
be relevant to the task’s solution. This lack of
specificity of the pedagogical context is potentially
useful for university instructors implementing
P-R mathematics tasks with their prospective
teachers. Specifically, instructors can use the
endemic ambiguity surrounding the conditions of
a pedagogical context to vary some of its conditions
in order to engage prospective teachers in related
mathematical activities. Consider, for example, the
pedagogical context of the Fractions Task, which
does not specify whether the class would be able to
produce an algebraic proof like the one in Figure 2.
An instructor could exploit this ambiguity to engage
prospective teachers in the development of other
arguments that are likely to be more accessible
to students, such as the arguments we discussed
earlier. Each of these alternative arguments is
based on different assumptions about the level
of students’ knowledge, and it is important to
make this explicit in the proposed mathematical
solutions to the task.

Third, the pedagogical context of a P-R mathe-
matics task has the potential to motivate prospec-
tive teachers’ engagement in the task by helping
them see why the mathematical ideas in the task
are, or can be, important for their future work as
teachers of mathematics. According to Harel [14],
“[s]tudents are most likely to learn when they see
a need for what we intend to teach them, where
by ‘need’ is meant intellectual need, as opposed to
social or economic need” (p. 501; the excerpt in the
original was in italics). In the case of prospective
teachers, a “need” for learning mathematics may
be defined in terms of developing mathemati-
cal knowledge that they need for teaching, i.e.,
knowledge of MfT. By helping prospective teachers
see a need for the ideas they are being taught
in mathematics courses for prospective teachers,
it is more likely that they will get interested in
learning these ideas. This is particularly important
for mathematical ideas that prospective teachers
tend to consider difficult or “advanced” for the

level of the students they will be teaching, such as
the notion of proof for pre-high school students.

Fourth, the design and implementation of
P-R mathematics tasks require some pedagog-
ical knowledge by instructors of mathematics
courses for prospective teachers. For example, the
design of the Fractions Task used knowledge about
a common student misconception in the domain of
proof and considered a possible link between this
student misconception and a teacher’s evaluation
of, and response to, a novel student method. The
pedagogical demands imposed by the design of P-R
mathematics tasks on the instructors’ knowledge
can create challenges for those who may have
limited background in pedagogy or familiarity with
the school mathematics curriculum. Similar chal-
lenges could emerge also for instructors during
the implementation of P-R mathematics tasks with
prospective teachers, especially in relation to the
question of what kinds of variations an instructor
could make to the pedagogical context of a task
without compromising the task’s realistic nature.
We return to these issues in the last section of the
article.

Exemplifying the Use of P-R Mathemat-
ics Tasks in a Mathematics Course for
Prospective Elementary Teachers
This section is organized in two parts. In the first
part we provide a brief description of major features
of a mathematics course for prospective elementary
teachers that we developed to promote MfT as a
form of applied mathematics. Given the importance
we attribute to P-R mathematics tasks in thinking
about MfT as a form of applied mathematics, P-R
mathematics tasks had a prominent place in the
course. Yet P-R mathematics tasks were not the
only kinds of tasks we used in the course. Another
kind was what we call typical mathematics tasks,
which embody only feature 1 of P-R mathematics
tasks. Advantages of typical mathematics tasks are
that they allow for a faster pace during university
sessions than P-R mathematics tasks do and do
not require any pedagogical knowledge from the
instructor.

In the second part we illustrate the use of P-R
mathematics tasks in the course by discussing
the implementation of a task sequence, which
includes both a typical and a P-R mathematics
task. We developed this and other task sequences
in a four-year study that used design experiment
methodology [15]. The design experiment included
five research cycles of implementation, analysis,
and refinement of different task sequences in the
course. In this article we discuss the implementa-
tion of one task sequence from the last research
cycle of the design experiment. The last research
cycle was conducted in two sections of the course
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Figure 3. A distance-time graph that can be
elaborated on in a potential proof of a general

method for finding a fraction between two given
positive and nonequivalent fractions.

with a total of thirty-nine prospective elementary
teachers and the second author as the instructor.
The data come from the implementation of the
task sequence in one of the sections.

General Description of the Course

This three-credit undergraduate mathematics
course was prerequisite for admission to the
master’s-level elementary teaching certification
program at a large American state university.
Contrary to what usually happens with mathemat-
ics courses for prospective elementary teachers
in North America [16], the course was offered
by the Department of Education rather than by
the Department of Mathematics. Yet this did not
make any difference to the fact that this was a
mathematics course.3 The students in the course
pursued undergraduate majors in different fields
of study and tended to have weak mathematical
backgrounds (for many of them this was the first
mathematics course since high school). Also, given
that the students were not yet in the teaching
certification program, they had limited or no
background in pedagogy.

The course was the only mathematics course
specified in the admission requirements for the
teaching certification program. It covered a wide
range of mathematical topics in different mathemat-
ical domains (arithmetic, algebra, number theory,
geometry, and measurement) and was intended
to improve prospective teachers’ understanding
of key mathematical concepts and procedures
in those topics. In addition to mathematical top-
ics, the course emphasized the following three

3The first two research cycles of the design experiment took
place at another large American state university where the
course was offered through the mathematics department.

mathematical practices: (a) reasoning-and-proving
(i.e., making mathematical generalizations and
formulating arguments for or against these gener-
alizations, with particular attention to the use of
definitions), (b) problem solving, and (c) making
connections between different forms of represen-
tation (algebraic, pictorial, etc.). With these three
practices, which we treated as strands that under-
pinned prospective teachers’ mathematical work,
we aimed to also help prospective teachers appre-
ciate what it means to “do” mathematics through
engaging them with more authentic mathematical
experiences, not merely helping them learn (or
relearn) mathematical concepts and procedures.

One aspect of the course’s approach to promote
MfT, which is the most relevant to our purposes
in this article (other features are discussed in
[17] and [18]), was the use of both typical and
P-R mathematics tasks in carefully designed task
sequences. A common task sequence began with
a typical mathematics task that set the stage for
a P-R mathematics task. The typical mathematics
task allowed prospective teachers to work on a
mathematical idea from an adult’s standpoint.
The P-R mathematics task, which followed the
typical task, introduced a pedagogical context that
prospective teachers had to consider in their math-
ematical work, thus engaging prospective teachers
in mathematical work from a teacher’s standpoint.
To address feature 2 of P-R mathematics tasks
concerning situating prospective teachers’ mathe-
matical work in a pedagogical context, we used a
wide range of classroom scenarios based on actual
classroom records: videos or written descriptions
of classroom episodes in elementary classrooms,
artifacts of elementary students’ mathematical
work, excerpts from elementary mathematics text-
books, etc. When actual classroom records were
unavailable, we used fictional records that were
nevertheless realistic.

An Example of a Task Sequence and Its
Implementation in the Course

The task sequence aimed to promote prospective
teachers’ knowledge about a possible relation
between the notions of area and perimeter of
rectangles. Central to this exploration were also
ideas of mathematical generalization and proof by
counterexample. The sequence included a typical
mathematics task (question 1) followed by a P-R
mathematics task (question 2):

Imagine that one of your students comes
to class very excited. She tells you that
she has figured out a theory that you
never told the class. She explains that she
has discovered that as the perimeter of a
rectangle increases, the area also increases.
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She shows you the work in Figure 4 below
to prove what she is doing:

Figure 4.

1. Evaluate mathematically the student
statement (underlined).

2. How would you respond to this
student?

The task sequence was an adaptation of tasks
that were originally developed by Ball [19] and
subsequently used by Ma [2].

Although question 1 refers to a student state-
ment, it is a typical mathematics task, because
the prompt asks prospective teachers to mathe-
matically evaluate the statement without asking
or expecting them to take into account the fact
that the statement was produced by a student.
Question 2, on the other hand, is a P-R mathematics
task, because it introduces a pedagogical consider-
ation that prospective teachers need to take into
account in their mathematical work. Although not
explicitly mentioned in the task, it was understood
in the teacher education class that answers to
prompts like the one in question 2 should not focus
on pedagogical issues (e.g., “I’d teach again the
notion of perimeter and area…”), but should rather
focus on the underlying mathematical issues by
appropriately considering the relevant pedagogical
context.

The mathematical focus of this P-R mathematics
task is to evaluate mathematically the underlined
statement, which is essentially what the prospective
teachers were asked to do in question 1. The
pedagogical context of the task concerns the
teacher’s responsibility to respond to the student
who produced the statement. An appropriate
response to question 1 could say that the statement
is false and provide a counterexample to refute
it. However, an appropriate response to question
2 would need to go beyond that. Consideration
also of the pedagogical context suggests that it
would be useful for the student’s learning if the
teacher not only refuted the student’s statement (by
providing a counterexample) but also helped her
understand why the statement is false and explore
the conditions under which the statement would be
true. This additional work, though pedagogically
situated, is deeply mathematical in nature and is

the kind of work that we argue deserves more
attention in mathematics courses for prospective
teachers.

The prospective teachers worked on the two
questions first individually and then in groups
of four or five. Later on there was a whole-
class discussion, which began with the instructor
(Stylianides) asking representatives from different
small groups to report their work on the task,
beginning with question 1 (all prospective teacher
names are pseudonyms).

Andria: We [the members of her small group]
said that it [the student statement]
was mathematically sound, because
as you increase the size of the figure,
the area is going to increase as well.

Tiffany : We [the members of her small group]
agreed. We thought the same, be-
cause as the sides are getting
bigger…[inaudible]

Stylianides: Does anybody disagree? [No group
expressed a disagreement.]

Evans: I agree. [Evans was in a different small
group than Andria and Tiffany.]

Stylianides: And how would you respond to the
student?

Melissa: I think it’s true, but they haven’t
proved it for all numbers, so it’s not
really a proof.

Andria: I think that you don’t have to try
every number [she seems to refer to
every possible case in the domain of
the statement] to be able to prove it,
because if the student can explain
why it works like we just did, like
if you increase the length, then the
area increases. [pause] [. . . ]

Meredith: I’d say that it’s an interesting idea,
and I’d see if they can explain why it
works.

As illustrated by the above transcript, all small
groups thought that the student statement was
true, but at the same time they seemed to realize
that the evidence that the student provided for her
claim was not a proof (see, e.g., Melissa’s comment).
As a result, the prospective teachers started to
think about how to prove the statement and how
to respond to the student. For example, Andria and
Meredith pointed out that the student needed to
prove/explain why the area of a rectangle increases
as its perimeter increases, with Andria appearing to
believe that she already had a proof. However, the
instructor knew that the statement was false. As the
representative of the mathematical community in
the classroom, he probed the prospective teachers
to check more cases to see whether they could
come up with an example in which the student
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statement was false. After a few minutes, all small
groups found at least one counterexample to
the statement and concluded that the statement
was false. We note that earlier in the course the
prospective teachers had opportunities to discuss
the idea that one counterexample suffices to refute
a general mathematical statement.

The prospective teachers’ counterexamples to
the student statement made them experience a
“cognitive conflict”, because at the initial stages of
their engagement with the task sequence, they did
not expect that a statement that looked so “obvious”
to them would turn out to be false. This unexpected
discovery motivated prospective teachers’ further
work on question 2. The instructor decided to give
the prospective teachers more time to think in
their small groups about question 2. The transcript
below is from the whole-class discussion that
followed the small-group work.

Natasha: We said that the way that they [the
students] are doing it, where they’re
just increasing the length of one
side, it’s always going to work for
them; but if they try examples where
they change the length on both sides,
that’s the only way it’s going to prove
that it doesn’t work all the time. So
you should try examples by changing
both sides.

Stylianides: [referring to the class] What do
you think about Natasha’s response?
Does it make sense? [The class nods
in agreement.] So what else? What
else do you think about this?

Evans: You can kind of ask them to re-
structure the proof so that it would
work.

Stylianides: What do you mean by “restructure
the proof”?

Evans: Like once they figure out that it
doesn’t work for all cases, they could
say it’s still like. . . if they saw it and if
they revise it like the wording or just
add a statement in there that if they
can come up with a mathematically
correct statement. . .

Stylianides: Anything else? [No response from
the class.] I think both ideas [men-
tioned earlier] are really important.
So when you have something [a state-
ment] that doesn’t work, then it’s
clear that this student would be in-
terested to know more. For example,
why it doesn’t work or under what
conditions does it work, because, ob-
viously, some of the examples that
the student checked worked. . . .

Natasha and Evans raised two related issues that
the teacher in the scenario of the P-R mathematics
task could address when responding to the student:
(a) why the statement is false (instead of simply
showing that the statement is false with a coun-
terexample) and (b) the conditions under which the
statement would be true. Based on our planning
for the implementation of the task, the instructor
would raise these issues anyway, because, as we
explained earlier, we considered it mathematically
sufficient but pedagogically inconsiderate for a
teacher to offer only a counterexample to the stu-
dent’s statement. We considered such a response
inadequate in light of the pedagogical context of
the task.

It is noteworthy that the two issues were raised
not by the instructor but by two prospective
teachers, Natasha and Evans, who (like the other
prospective teachers in the class) had no teaching
experience. It is difficult to say what provoked the
contributions of these prospective teachers, but
we speculate that the pedagogical context of the
P-R mathematics task played a role in this. It is also
possible that the P-R mathematics tasks we used
earlier in the course had helped the prospective
teachers begin to develop pedagogical sensibilities.

Following a summary of the two issues in
Evans’s contribution, the instructor engaged the
prospective teachers in an examination of the
conditions under which the student statement
would be true. Specifically, he asked the prospective
teachers to investigate what happens to the area
of a rectangle in each of the following cases where
the perimeter of the rectangle increases:

1. One of the two dimensions (length or width)
is increased and the other dimension is kept
constant.

2. Both dimensions are increased.
3. One of the two dimensions is increased and

the other dimension is decreased, so that
the amount of increase in one dimension is
larger than the amount of decrease in the
other.

The prospective teachers produced algebraic and
pictorial proofs to show that in the first two
cases the area always increases and examples to
show that in the third case the area can increase,
decrease, or stay the same.

To conclude, our discussion of the implemen-
tation of the task sequence exemplified the idea
that the application of mathematical knowledge
in pedagogical contexts can be different from its
application in similar but purely mathematical
contexts. Although the typical mathematics task
and the P-R mathematics task in the sequence were
dealing with the same mathematical ideas, the
pedagogical context in which the P-R mathematics
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task was embedded shaped what could count as an
appropriate mathematical solution to it, thereby
supporting the generation of rich mathematical
activity in a realistic pedagogical context.

Concluding Remarks
The design, implementation, and solution of P-R
mathematics tasks suggest that instructors of
university mathematics courses for prospective
teachers who may want to use these tasks in their
courses need to have not only good mathematical
knowledge but also some knowledge of school-
related pedagogy (including familiarity with the
school mathematics curriculum). For example:
What arguments for a true generalization could
be accessible to students of different ages? In
addition to offering a counterexample, what other
mathematical investigations would be pertinent in
a pedagogical context where a student proposed a
false generalization?

In countries such as the United States where
mathematics courses for prospective teachers are
typically offered by mathematics departments [16],
it may be unrealistic to require or expect that in-
structors of these courses have good knowledge of
pedagogy in addition to their robust mathematical
knowledge [20]. However, if certain knowledge of
pedagogy is recognized to be useful for teaching
MfT to prospective teachers, ways need to be found
to support these instructors in their work.

One way could be through textbooks intended
for use in mathematics courses for prospective
teachers. Textbooks that would be consistent
with the conceptualization of MfT as a form
of applied mathematics discussed in this article
would not only include P-R mathematics tasks
(alongside typical and possibly other kinds of
mathematics tasks) but would also include the
following: (a) the rationale for the design of P-R
mathematics tasks and associated target learning
goals for prospective teachers, (b) suggestions for
implementing the tasks with prospective teachers,
and (c) comments about how the tasks relate to
school mathematics (e.g., an elaboration on the
pedagogical context of the tasks and how this
context can shape mathematical solutions).

To conclude, the conceptualization of MfT as
a form of applied mathematics highlights the
idea that prospective teachers’ learning of MfT
should not happen in isolation from the context in
which teachers will need to apply this knowledge.
P-R mathematics tasks can provide a vehicle
through which prospective teachers’ learning of
mathematics can be connected to the teaching
practice. On the one hand, these tasks have
mathematics at the core of prospective teachers’
activity; this is a necessity given that they are

meant for use in mathematics courses. On the
other hand, they situate this mathematical activity
in a substantial pedagogical context that shapes
and influences the activity, thereby ensuring that
prospective teachers’ learning of mathematics does
not lose sight of its domain of application.
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