A spectrahedron is a convex set that appears in a range of applications. Introduced in [3], the name joins “spectra”, evoking the eigenvalues of a matrix, with “hedron”, suggesting that spectrahedra generalize convex polyhedra.

First we need to recall some linear algebra. All the eigenvalues of a real symmetric matrix are real, and if these eigenvalues are all nonnegative then the matrix is positive semidefinite. The set of positive semidefinite matrices is a convex cone in the vector space of real symmetric matrices.

A spectrahedron is the intersection of an affine linear space with this convex cone of matrices. An n-dimensional affine linear space of real symmetric matrices can be parameterized by

$$A(x) = A_0 + x_1 A_1 + \cdots + x_n A_n$$

as $x = (x_1, \ldots, x_n)$ ranges over \mathbb{R}^n, where A_0, \ldots, A_n are real symmetric matrices. This identifies our spectrahedron with the set of x in \mathbb{R}^n for which the matrix $A(x)$ is positive semidefinite. This condition, denoted $A(x) \succeq 0$, is commonly known as a linear matrix inequality.

For example, we can write the cylinder

$$\{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 \leq 1, -1 \leq z \leq 1\}$$

as a spectrahedron. To do this, parameterize a 3-dimensional affine space of 4×4 matrices by

$$\begin{pmatrix}
1 + x & y & 0 & 0 \\
y & 1 - x & 0 & 0 \\
0 & 0 & 1 + z & 0 \\
0 & 0 & 0 & 1 - z
\end{pmatrix}.$$

This matrix is clearly positive definite at the point $(x, y, z) = (0, 0, 0)$. In fact, it is positive semidefinite exactly for points in the cylinder.

This matrix has rank four at points in the interior of the cylinder, rank three at most points on the boundary, and rank two at points on the two circles on the top and bottom. Here we start to see the connection between the geometry of spectrahedra and rank. The boundary is “more pointy” at matrices of lower rank.

Another example is a polyhedron, which is the intersection of the nonnegative orthant with an affine linear space. Any polyhedron is a spectrahedron parameterized by diagonal matrices since a diagonal matrix is positive semidefinite exactly when the diagonal entries are nonnegative.

Like polyhedra, spectrahedra have faces cut out by tangent hyperplanes, but they may have infinitely many. For example, one can imagine rolling a cylinder on the floor along the 1-dimensional family of its edges.
This brings us to an important motivation for studying spectrahedra: optimization. The problem of maximizing a linear function over a polyhedron is a linear program. Generalizing polyhedra to spectrahedra leads to semidefinite programming, the problem of maximizing a linear function over a spectrahedron. Semidefinite programming problems can be solved numerically in polynomial time using interior-point methods and form a broad and powerful tool in optimization.

Angles, Statistics, and Graphs

Semidefinite programming has been used to relax many “hard” optimization problems, allowing one to find a bound on the true solution. This approach has been most successful in cases where the geometry of the underlying spectrahedron reveals the bounds to be close to the true answer.

For a flavor of these applications, consider the spectrahedron (displayed below) of 3×3 matrices with 1’s along the diagonal:

$$
\{(x,y,z) \in \mathbb{R}^3 : \begin{pmatrix}
1 & x & y \\
x & 1 & z \\
y & z & 1
\end{pmatrix} \text{ is positive semidefinite}\}.
$$

This spectrahedron consists of points $(x,y,z) = (\cos(\alpha), \cos(\beta), \cos(\gamma))$ where α, β, γ are the pairwise angles between three length-one vectors in \mathbb{R}^3. To see this, note that we can factor any positive semidefinite matrix A as a real matrix times its transpose, $A = VV^T$. The entries of A are then the inner products of the row vectors of V.

The four rank-one matrices on this spectrahedron occur exactly when these row vectors lie on a common line. They correspond to the four ways of partitioning the three vectors into two sets.

This ellipsoid appears in statistics as the set of correlation matrices and in the remarkable Goemans-Williamson semidefinite relaxation for finding the maximal cut of a graph (see [2]).

This spectrahedron sticks out at its rank-one matrices, meaning that a random linear function often (but not always) achieves its maximum at one of these points. This is good news for the many applications that favor low-rank matrices.

Sums of Squares and Moments

Another important application of semidefinite programming is to polynomial optimization [1, Chapter 3]. For example, one can bound (from below) the global minimum of a multivariate polynomial $p(x)$ by the maximum value of λ in \mathbb{R} such that the polynomial $p(x) - \lambda$ can be written as a sum of squares of real polynomials. (Sums of squares are guaranteed to be globally nonnegative!) The expressions of a polynomial as a sum of squares form a spectrahedron, and finding this λ is a semidefinite programming problem.

For example, take the univariate polynomial $p(t) = t^4 + t^2 + 1$. For any choice of the parameter a in \mathbb{R} we can write our polynomial as

$$
p(t) = \begin{pmatrix} 1 & t & t^2 \end{pmatrix} \begin{pmatrix} 1 & 0 & a \\ 0 & 1 - 2a & 0 \\ a & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}.
$$

When this 3×3 matrix is positive semidefinite, it gives a representation of $p(t)$ as a sum of squares. Indeed, if it has rank r, we can write it as a sum of r rank-one matrices $\sum_{i=1}^{r} v_i v_i^T$. Multiplying both sides by $(1, t, t^2)$, we then write $p(t)$ as the sum of squares $\sum_{i=1}^{r} ((1, t, t^2) \cdot v_i)^2$.

Here the spectrahedron is a line segment parameterized by $a \in [-1, 1/2]$. Its two rank-two end points correspond to the two representations of $p(t)$ as a sum of two squares:

$$(t^2 - 1)^2 + (\sqrt{3}t)^2 \text{ and } (t^2 + 1/2)^2 + (\sqrt{3}/2)^2.$$

This idea extends to relaxations for optimization of a multivariate polynomial over any set defined by polynomial equalities and inequalities.

Dual to this theory is the study of moments, which come with their own spectrahedra. The convex hull of the curve $\{(t, t^2, t^3) : t \in [-1, 1]\}$ (a spectrahedron) is an example shown above.
Understanding cancer progression and optimizing treatment is difficult because a typical tumor is made up of many different cell phenotypes that react differently to treatment. Understanding the evolution of tumors has generated new mathematical questions in dynamical systems, population genetics, evolutionary game theory, partial differential equations, and probability theory.

Mathematical scientists of all types are encouraged to learn about opportunities in mathematical biology by attending MBI events. Information about the 2014-15 program is available at http://go.osu.edu/mbi-cancer. The workshop pages include speakers and schedules, and they link to online application forms. All MBI talks are live video streamed and some support is available for workshop applicants.

A Nonexample

To finish, let us return to the question of what a spectrahedron is, giving a nonexample. Projecting our original cylinder onto the plane $x + 2z = 0$ results in the convex hull of two ellipses. This convex set is not a spectrahedron! A matrix is positive semidefinite exactly when its diagonal minors are nonnegative. Hence any spectrahedron is cut out by finitely many polynomial inequalities. However, the projection cannot be written this way. This shows that, unlike polyhedra, the class of spectrahedra is not closed under taking projections.

Spectrahedral Conclusions

The study of spectrahedra brings together optimization, convexity, real algebraic geometry, statistics, and combinatorics, among other areas. There are effective computer programs like cvx and YALMIP (both for MATLAB) that work with spectrahedra and solve semidefinite programming problems.

Spectrahedra are beautiful convex bodies and fundamental objects in optimization and matrix theory. By understanding the geometry of spectrahedra, we can fully explore the potential of semidefinite programming and its applications.

References

