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Cynthia Vinzant

A spectrahedron is a convex set that appears in a
range of applications. Introduced in [3], the name
joins “spectra”, evoking the eigenvalues of a ma-
trix, with “hedron”, suggesting that spectrahedra
generalize convex polyhedra.

First we need to recall some linear algebra. All
the eigenvalues of a real symmetric matrix are
real, and if these eigenvalues are all nonnegative
then the matrix is positive semidefinite. The set of
positive semidefinite matrices is a convex cone in
the vector space of real symmetric matrices.

A spectrahedron is the intersection of an affine
linear space with this convex cone of matrices. An
n-dimensional affine linear space of real symmetric
matrices can be parameterized by

A(x) = A0 + x1A1 + · · · + xnAn

as x = (x1, . . . , xn) ranges overRn, whereA0, . . . , An
are real symmetric matrices. This identifies our
spectrahedron with the set of x in Rn for which the
matrixA(x) is positive semidefinite. This condition,
denoted A(x) � 0, is commonly known as a linear
matrix inequality.

For example, we can write the cylinder

{(x, y, z) ∈ R3 : x2 + y2 ≤ 1, −1 ≤ z ≤ 1}

as a spectrahedron. To do this, parameterize a
3-dimensional affine space of 4× 4 matrices by

1+ x y 0 0
y 1− x 0 0
0 0 1+ z 0
0 0 0 1− z

 .
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This matrix is clearly positive definite at the
point (x, y, z) = (0,0,0). In fact, it is positive
semidefinite exactly for points in the cylinder.

This matrix has rank four at points in the
interior of the cylinder, rank three at most points
on the boundary, and rank two at points on the
two circles on the top and bottom. Here we start
to see the connection between the geometry of
spectrahedra and rank. The boundary is “more
pointy” at matrices of lower rank.

Another example is a polyhedron, which is the
intersection of the nonnegative orthant with an
affine linear space. Any polyhedron is a spectra-
hedron parameterized by diagonal matrices since
a diagonal matrix is positive semidefinite exactly
when the diagonal entries are nonnegative.

Like polyhedra, spectrahedra have faces cut out
by tangent hyperplanes, but they may have infinitely
many. For example, one can imagine rolling a
cylinder on the floor along the 1-dimensional
family of its edges.
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This brings us to an important motivation for
studying spectrahedra: optimization. The problem
of maximizing a linear function over a polyhedron
is a linear program. Generalizing polyhedra to
spectrahedra leads to semidefinite programming,
the problem of maximizing a linear function
over a spectrahedron. Semidefinite programming
problems can be solved numerically in polynomial
time using interior-point methods and form a broad
and powerful tool in optimization.

Angles, Statistics, and Graphs

Semidefinite programming has been used to relax
many “hard” optimization problems, allowing one
to find a bound on the true solution. This approach
has been most successful in cases where the
geometry of the underlying spectrahedron reveals
the bounds to be close to the true answer.

For a flavor of these applications, consider the
spectrahedron (displayed below) of 3× 3 matrices
with 1’s along the diagonal:(x, y, z) ∈ R3 :

1 x y
x 1 z
y z 1

 is positive
semidefinite

 .
This spectrahedron consists of points (x, y, z) =
(cos(α), cos(β), cos(γ)) where α,β, γ are the pair-
wise angles between three length-one vectors in R3.
To see this, note that we can factor any positive
semidefinite matrix A as a real matrix times its
transpose, A = VVT . The entries of A are then the
inner products of the row vectors of V .

The four rank-one matrices on this spectrahe-
dron occur exactly when these row vectors lie on a
common line. They correspond to the four ways of
partitioning the three vectors into two sets.

This elliptope appears in statistics as the set
of correlation matrices and in the remarkable
Goemans-Williamson semidefinite relaxation for
finding the maximal cut of a graph (see [2]).

This spectrahedron sticks out at its rank-one
matrices, meaning that a random linear function

often (but not always) achieves its maximum at
one of these points. This is good news for the
many applications that favor low-rank matrices.

Sums of Squares and Moments
Another important application of semidefinite
programming is to polynomial optimization [1,
Chapter 3]. For example, one can bound (from
below) the global minimum of a multivariate
polynomial p(x) by the maximum value of λ in R
such that the polynomial p(x)− λ can be written
as a sum of squares of real polynomials. (Sums of
squares are guaranteed to be globally nonnegative!)
The expressions of a polynomial as a sum of
squares form a spectrahedron, and finding this λ
is a semidefinite programming problem.

For example, take the univariate polynomial
p(t) = t4 + t2 + 1. For any choice of the parameter
a in R we can write our polynomial as

p(t) =
(
1 t t2

)1 0 a
0 1− 2a 0
a 0 1


1
t
t2

 .
When this 3× 3 matrix is positive semidefinite, it
gives a representation of p(t) as a sum of squares.
Indeed, if it has rank r , we can write it as a sum
of r rank-one matrices

∑r
i=1 viv

T
i . Multiplying both

sides by (1, t, t2), we then write p(t) as the sum of
squares

∑r
i=1((1, t, t2) · vi)2.

Here the spectrahedron is a line segment param-
eterized by a ∈ [−1,1/2]. Its two rank-two end
points correspond to the two representations of
p(t) as a sum of two squares:

(t2 − 1)2 + (
√

3t)2 and (t2 + 1/2)2 + (
√

3/2)2.

This idea extends to relaxations for optimization
of a multivariate polynomial over any set defined
by polynomial equalities and inequalities.

Dual to this theory is the study of moments,
which come with their own spectrahedra. The
convex hull of the curve {(t, t2, t3) : t ∈ [−1,1]}
(a spectrahedron) is an example shown above.

May 2014 Notices of the AMS 493



Cancer and its Environment
2014-2015 EMPHASIS PROGRAM

Mathematical Biosciences Institute

www.mbi.osu.edu

Understanding cancer progression and optimizing 
treatment is difficult because a typical tumor is made up 
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partial differential equations, and probability theory. 
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illustrated book for kids — and those of 

us still children at heart — that takes you up 
(and up, and up, and up, and up, and ...) through 

the counting numbers, illustrating the power of the 
di� erent notations mathematicians have invented 
to talk about VERY BIG NUMBERS. Many of us use 
words to try to describe the beauty and the power of 
mathematics. Schwartz does it with captivating,
full-color drawings.”

Keith Devlin, NPR Math Guy and author of
� e Math Instinct and � e Math Gene.

Open this book and embark 
on an accelerated tour through the 

number system, starting with small 
numbers and building up to ones too 
huge for names! Along the way, you’ll
become familiar with the sizes of big 
numbers in terms of everyday objects, 
such as the number of basketballs 
needed to cover New York City. 
Take an unforgettable journey 

part of the way to in� nity!

Richard Evan Schwartz

A Nonexample
To finish, let us return to the question of
what a spectrahedron is, giving a nonexam-
ple. Projecting our original cylinder onto
the plane x+ 2z = 0 results in the convex
hull of two ellipses. This convex set is not
a spectrahedron! A matrix is positive semi-
definite exactly when its diagonal minors
are nonnegative. Hence any spectrahedron
is cut out by finitely many polynomial in-
equalities. However, the projection cannot
be written this way. This shows that, unlike

polyhedra, the class of spectrahedra is not closed
under taking projections.

Spectrahedral Conclusions
The study of spectrahedra brings together op-
timization, convexity, real algebraic geometry,
statistics, and combinatorics, among other areas.
There are effective computer programs like cvx
and YALMIP (both for MATLAB) that work with
spectrahedra and solve semidefinite programming
problems.

Spectrahedra are beautiful convex bodies and
fundamental objects in optimization and matrix
theory. By understanding the geometry of spec-
trahedra, we can fully explore the potential of
semidefinite programming and its applications.
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