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I
n 1970, Gian-Carlo Rota posed a conjecture
predicting a beautiful combinatorial char-
acterization of linear dependence in vector
spaces over any given finite field. We have
recently completed a fifteen-year research

program that culminated in a solution of Rota’s
Conjecture. In this article we discuss the conjecture
and give an overview of the proof.

Matroids are a combinatorial abstraction of
linear independence among vectors; given a finite
collection of vectors in a vector space, each subset
is either dependent or independent. A matroid
consists of a finite ground set together with a
collection of subsets that we call independent;
the independent sets satisfy natural combinatorial
axioms coming from linear algebra. Not all matroids
can be represented by a collection of vectors
and, ever since their introduction by Hassler
Whitney [26] in 1935, mathematicians have sought
ways to characterize those matroids that are. Rota’s
Conjecture asserts that representability over any
given finite field is characterized by a finite list
of obstructions. We will formalize these notions,
and the conjecture, in the next section. In the
remainder of this introduction, we will describe
the journey that led us to a solution.

In the late 1990s, Rota’s Conjecture was already
known to hold for fields of size two, three, and
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four. Geelen, Gerards, and Kapoor [4] had recently
announced that there are seven obstructions for
representability over the four element field. As
far back as 1958, Tutte had already proved that
there is one obstruction for the class of binary
matroids [22], and in the 1970s Bixby [1] and
Seymour [20] had independently proved that there
are four obstructions for the class of ternary
matroids, verifying a result that was announced
earlier by Ralph Reid.

It was a promising time for matroid theory; a
number of useful new techniques had emerged in
the previous decade, and it looked like there was
real potential for major progress. Nevertheless,
there is a significant difference between the con-
crete problem of finding the full set of obstructions
for some particular field and the abstract problem
of showing that there are finitely many obstruc-
tions for an arbitrary finite field. The techniques
available at that time did not offer any realistic
hope of solving Rota’s Conjecture in general.

Our hopes were raised in 1999, at a workshop on
graph theory in Oberwolfach, Germany, when Neil
Robertson and Paul Seymour proposed ideas for
extending their Graph Minors Project to matroids.
We eagerly took up the challenge; the Graph Minors
Theory had exactly the kind of general purpose
tools that we lacked. Their results were published
in a series of twenty-three journal papers totalling
more than 700 pages, and we spent the next year
learning how the machinery worked.

Then we set about the daunting task of extending
the Graph Minors Theory to matroids. That was
a major undertaking which took a decade to
complete. The first three years were the hardest,
and during that time it was not at all clear that we
would succeed. The relief was palpable when we
made our first major breakthrough in November
of 2002. That marked a massive turning point in
the project: from that point on we had no doubt
that we would get to the end, despite the enormity
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of the task that lay ahead. We even maintained our
optimism through two bleak years, 2006 and 2007,
when we made almost no discernible progress
despite considerable effort.

In early 2011 we had extended the main part
of the Graph Minors Project to matroids. The
techniques that we had developed were general
and powerful, however, there were still many issues
that were particular to Rota’s Conjecture that had
to be addressed. In fact, at that time we did not
have a concrete approach in mind, and our first
serious attempt to prove Rota’s Conjecture, later in
2011, failed. In early 2012 we hatched a new plan
of attack and spent the rest of that year developing
the required machinery. When we met together in
January 2013, we were confident that we had the
right method and all of the required tools; after
three weeks of joint work we had thrashed out the
remaining details.

We are now immersed in the lengthy task of
writing up our results. Since that process will take
a few years, we have written this article offering a
high-level preview of the proof.

What Is a Matroid?
A matroid consists of a pair (E, I) where E is a
finite set, called the ground set, and I is a collection
of subsets of E, called independent sets, such that

1. the empty set is independent,
2. subsets of independent sets are indepen-

dent, and
3. for each set X ⊆ E, the maximal inde-

pendent subsets of X all have the same
size.

The canonical example of a matroid comes
from a collection of vectors in a vector space or,
equivalently, the columns of a matrix. Let A be
a matrix over a field F, and let E be the set of
column-indices of A. The column matroid of A,
denoted by M(A), is the pair (E, I) where I is
the collection of subsets of E that index linearly
independent sets of columns. A matroid is called
F-representable if it is the column matroid of a
matrix over the field F.

The matroid axioms allow us to extend notions
such as bases and rank from linear algebra to
matroids; a basis being a maximal independent set
and the rank of a set X in a matroid M = (E, I),
denoted rM(X), being the size of a maximal
independent subset of X.

There are matroids that are not representable
over any field; indeed, it is believed, but not yet
proven, that the proportion of n-element matroids
that are representable is vanishingly small as n
tends to infinity. It was Whitney himself, in the
introductory paper on matroid theory [26] in 1935,
who posed the problem of characterizing the class
of representable matroids.

Whitney’s problem is open to interpretation
in that there are many different types of char-
acterizations that one might consider and that
one can consider representability over a specified
or unspecified field. With two notable exceptions,
most interpretations of Whitney’s problem have
been met with negative answers; see [11], [12],
[13], [21]. The first exception is the algorithmic
problem of determining when a given matroid is
representable over an unspecified field, which was
proved to be decidable by Vámos [28]. The second
exception is, of course, Rota’s Conjecture.

Matroid Duality

Matroids come in dual pairs; the dual of M ,
denoted M∗, is the matroid on E whose bases
are the complements of the bases of M . While
it is not immediately clear from this definition,
M∗ is indeed always a matroid. More surprising,
perhaps, is the fact that F-representability is
preserved under duality. Indeed, if M = M(A),
then M(A)∗ = M(A′), where A′ is a matrix whose
row space is the orthogonal space of the row space
of A.

Minors of Matroids

Let C and D be sets of elements in a matroid
M = (E, I). The matroid obtained from M by
deletingD is defined as (E−D, {I ⊆ E−D : I ∈ I}).
Note that M \D is clearly always a matroid. The
dual operation of deletion is contraction which
is defined by M/C = (M∗ \ C)∗. This definition
of contraction is not particularly illuminating;
geometrically it corresponds to projection from C,
which is more readily seen via the rank function

rM/C(X) = rM(X ∪ C)− rM(C).

A minor of M is a matroid of the form M \D/C,
where D and C are disjoint subsets of E; when
D∪C is nonempty, we call the minor proper. Note
that the class of F-representable matroids is closed
under both deletion and duality and, hence, also
under taking minors. For any minor-closed class of
matroids, it is natural to consider characterizing
the class by describing the excluded minors, that
is, the matroids outside the class whose proper
minors are all in the class—which brings us to
Rota’s Conjecture [19].

Conjecture 1 (Rota). For each finite field F, there
are, up to isomorphism, only finitely many excluded
minors for the class of F-representable matroids.

Since a minor-closed class is determined by
its list of excluded minors, Rota’s Conjecture
provides a succinct characterization for the class
of F-representable matroids.
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Figure 1. The 444-point line, U2,4U2,4U2,4; the 555-point line,
U2,5U2,5U2,5; and the Fano plane, F7F7F7.

Combinatorial Geometry

Consider a representable matroid M = M(A). If A′
is a matrix that is obtained from A by elementary
row operations and column scaling, then A′ is
also a representation. Observe that, in obtaining
A′ from A in this way, we have simply applied a
projective transformation to the column space of
A, and, hence, we say that A and A′ are projectively
equivalent.

Now, instead of considering the elements in a
representable matroid as vectors in a vector space,
we could equally well regard them as points in
a projective geometry. While this is a relatively
small shift in perspective, it is surprisingly useful
for intuition, and a lot of matroid terminology
comes from geometry. For example, a rank-k flat
is a maximal set of rank k. A point is a rank-1 flat,
a line is a rank-2 flat, a plane is a rank-3 flat, and a
hyperplane is a flat of rank rM(E)− 1.

This geometric approach has the additional
feature that it provides a succinct method for
describing matroids of low rank. For example,
Figure 1 depicts three important matroids U2,4,
U2,5, and F7. The 4-point line, U2,4, is the only
excluded minor for the class of binary matroids,
and the excluded minors for the class of ternary
matroids are U2,5, F7, and their duals.

Graph Minors Project
A minor of a graph G is a graph that is obtained
from a subgraph of G by contracting some edges.
To contract an edge, one identifies the ends of the
edge into a single vertex and then deletes the edge.

Note that the class of planar graphs is closed
under taking minors. As we will see, this class
turns out to be particularly fundamental in the
study of graph minors. It is therefore fitting to
begin with Kuratowski’s characterization of the
class of planar graphs [10], which is one of the
gems of mathematics.

Theorem 2 (Kuratowski’s Theorem). A graph is
not planar if and only if it has a minor isomorphic
to K3,3 or K5.

We can restate Kuratowski’s Theorem as: the
excluded minors for the class of planar graphs are
K3,3 and K5; see Figure 2.

Robertson and Seymour generalized this result
from the plane to arbitrary surfaces in [16].

Figure 2. The Kuratowski graphs: K5K5K5 and K3,3K3,3K3,3.

Theorem 3 (Generalized Kuratowski’s Theorem).
For any given surface, there are only finitely many
excluded minors for the class of graphs that embed
in the surface.

Later Robertson and Seymour further general-
ized the result to arbitrary minor-closed classes [18].
Diestel, in his book on graph theory [2], says that
this theorem “dwarfs any other result in graph
theory and may doubtless be counted among the
deepest theorems that mathematics has to offer”.

Theorem 4 (Well-Quasi-Ordering Theorem). Each
minor-closed class of graphs has only finitely many
excluded minors.

The following two statements are reformulations
of the WQO Theorem:

• In each infinite set of graphs there are two
graphs, one isomorphic to a minor of the
other.

• There are only countably many distinct
minor-closed classes of graphs.

How then does one go about proving such a
result? The first step is obvious. Suppose that the
result is false and, hence, there exists an infinite
sequence (H1,H2, . . .) of graphs such that none is
isomorphic to a minor of another. In particular,
none of the graphs (H2,H3, . . .) contains a minor
isomorphic to H1. The next step is to ask what
a graph looks like if it does not contain a minor
isomorphic to H1. This question is answered by
the Graph Minors Structure Theorem [17], which
is the workhorse of the Graph Minors Project.

Let EX(H1) denote the set of graphs that do not
contain a minor isomorphic to H1. If S is a surface
into which H1 does not embed, then every graph
that embeds in S is clearly in EX(H1). Let G denote
the set of graphs that embed into a surface that
does not embed H1. Thus G ⊆ EX(H1). The gist of
the Graph Minors Structure Theorem is that each
graph in EX(H1) can be constructed from graphs
in G in a specified way.

Note that, if H1 is planar, then it embeds in
every surface and, hence, the class G is empty.
Therefore graphs omitting H1 have a particularly
simple structure; see [15]. The extension of that
result to matroids over finite fields [5] was our
first major breakthrough.
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The Graph Minors Structure Theorem gives
considerable traction with the WQO Theorem, but
completing the proof still requires more than 100
pages of careful argument.

From Graphs to Matroids
A circuit in a graph G = (V , E) is a connected
subgraph of G whose vertices all have degree 2,
and a forest of G is a subgraph of G that does not
contain a circuit. The cycle matroid of G, denoted
M(G), is defined as (E,F)whereF is the collection
of all edge-sets of forests of G. It is easy to show
that M(G) is always a matroid. A matroid is called
graphic if it is the cycle matroid of a graph.

The class of graphic matroids turns out to be
surprisingly fundamental, in much the same way
that the class of planar graphs is fundamental in the
Graph Minors Project. Substantial parts of matroid
theory have their roots in graph theory, which,
given what we now know, is not at all surprising.
This link to graph theory has also shaped the
terminology. Note that the minimal dependent sets
of M(G) are the edge-sets of circuits of G. This
terminology is carried over to general matroids:
a minimal dependent set in a matroid is called a
circuit.

Minors and Duality

The class of graphic matroids is minor-closed.
Moreover, if D and C are disjoint edge-sets in
a graph G, then M(G \D/C) = M(G) \D/C. The
class of graphic matroids is not, however, closed
under duality. In fact, a graph G is planar if and
only if M(G)∗ is graphic. This beautiful geometric
characterization of planarity was observed by
Whitney [25] and is the first glimpse of a deep
connection between matroid theory and topological
graph theory.

By the discussion above, any characterization
of the class of graphic matroids gives a characteri-
zation for the class of planar graphs. In particular,
the following excluded-minor characterization for
the class of graphic matroids, due to Tutte [23],
implies Kuratowski’s Theorem.

Theorem 5. The excluded minors for the class of
graphic matroids are U2,4, F7, (F7)∗,M(K3,3)∗, and
M(K5)∗.

Representability

Graphic matroids are representable; in fact, they
are representable over every field. The signed-
incidence matrix of a graph G = (V , E) is a matrix
A ∈ {0,±1}V×E such that, for each edge e with
ends u and v , if u = v , then the column indexed by
e is identically zero, and if u ≠ v , then the column
indexed by e has exactly one 1 and exactly one −1,
and these are in the (u, e) and (v, e) positions, in
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Figure 3. A graph and its signed-incidence
matrix.

no particular order; see Figure 3. It is a routine
exercise to verify that A is a representation of
M(G) over any field.

Frame Matroids

The class of graphic matroids is contained in a
richer class of matroids, namely the class of “frame
matroids”. A frame matrix over F is a matrix with
at most two nonzero entries per column, and a
frame matroid over F is one that is represented
by a frame matrix. As with the class of graphic
matroids, the class of frame matroids is closed
under taking minors. Moreover, there is a natural
way to associate a graph with a frame matroid,
although, to fully describe the matroid one needs
to “decorate” the graph by orienting and labelling
its edges.

Matroid Minors Project
Rota’s Conjecture is reminiscent of the Generalized
Kuratowski Theorem. Robertson and Seymour
were able to further generalize the Generalized
Kuratowski Theorem to obtain the WQO Theorem,
so, perhaps, Rota’s Conjecture is a special case
of a much more general theorem. However, it is
not true that the WQO Theorem extends to all
matroids. An antichain of matroids is a set of
matroids no one of which is isomorphic to a minor
of another. It is surprisingly easy to construct
infinite antichains; the matroids {M3,M4,M5, . . .}
in Figure 4, for example, form an infinite antichain
of rank-3 matroids.

We were, however, able to prove the following
significant generalization of the WQO Theorem.

Theorem 6 (Matroid WQO Theorem). For each
finite field F and each minor-closed class of F-
representable matroids, there are only finitely
many F-representable excluded minors.

This result is incomparable with Rota’s Conjec-
ture, in the sense that neither result implies the
other, since, in Rota’s Conjecture, the excluded
minors are, by definition, not representable over F.

Our proof of the Matroid WQO Theorem parallels
the proof of the WQO Theorem for graphs. The
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Figure 4. The first three matroids,M3M3M3,M4M4M4, and
M5M5M5, in an infinite antichain.

most significant ingredient is an analogue of the
Graph Minors Structure Theorem. Recall that the
Graph Minors Structure Theorem essentially says
that, for any minor closed class of graphs, the
graphs in the class can be constructed, in specified
ways, from graphs that embed in surfaces of low
genus.

For a finite field F, what are the fundamental
minor-closed classes of F-representable matroids?
It turns out that there are, up to duality, only two
types. First, for each subfield F′ of F, the set of
all F′-representable matroids is minor-closed. The
second is the class of frame matroids over F.

The Matroid Minors Structure Theorem de-
scribes, for a finite field F, how to construct, in a
specified way, the members of an arbitrary fixed
minor-closed class of F-representable matroids
from matroids represented over subfields, frame
matroids, and the duals of frame matroids. It is
this theorem that consumed most of our effort—it
took more than a decade to prove.

Toward Rota’s Conjecture
While we have been working together since 1999, it
was not until 2012 that we finally formulated our
strategy for attacking Rota’s Conjecture. Prior to
2012 we were primarily immersed in the Matroid
Minors Structure Theory. In this section we outline
the machinery that we developed specifically for
proving Rota’s Conjecture. Significant parts of the
machinery were developed with Tony Huynh and
Stefan van Zwam who were postdoctoral fellows
with Bert Gerards.

Connectivity

Connectivity plays a significant role in matroid
theory in general and in the proof of Rota’s
Conjecture in particular. The following definitions
are due to Tutte [24]. A k-separation in a matroid
M = (E, I) is a partition (X, Y) of E such that
rM(X) + rM(Y) − rM(E) < k and |X|, |Y | ≥ k. A
matroid is k-connected if it has no l-separation for
any l < k.

To motivate the definition, consider the case
that M is represented by a matrix A. Let V denote
the column space of A, and let 〈X〉 denote the
subspace of V spanned by the columns indexed by

X. The dimension theorem for subspaces shows
that the dimension of 〈X〉∩〈Y〉 is equal to rM(X)+
rM(Y)− rM(E). So when rM(X)+ rM(Y)− rM(E) is
small, X and Y are separated by a low-dimensional
subspace of V. The condition that |X|, |Y | ≥ k is
a nondegeneracy condition that is needed since
rM(X)+ rM(Y)− rM(E) ≤min(|X|, |Y |).

Problems concerning matroid representation
typically reduce to the 3-connected case, and this
is true of Rota’s Conjecture.

Lemma 7. For each field F, each excluded minor for
the class of F-representable matroids is 3-connected.

Unfortunately one cannot easily improve on
Lemma 7; for each finite field of order at least 3,
there is an excluded minor that is not 4-connected.
The problem is that the nondegeneracy condition
|X|, |Y | ≥ k is too weak. We were able to prove:

Theorem 8. For each finite field F and integer k
there is an integer n = n(F, k) such that, if (A, B) is
a k-separation in an excluded minor for the class of
F-representable matroids, then min(|A|, |B|) ≤ n.

We do not know an elementary proof of Theo-
rem 8; our proof relies on several difficult results,
including the Matroid WQO Theorem. As a conse-
quence of applying well-quasi-ordering techniques
in the proof, we do not have a computable bound
on n(F, k), which, in turn, means that we do not
obtain a computable bound on either the number
or the size of the excluded minors for the class of
F-representable matroids.

Theorem 8 shows that the excluded minors are
very highly connected in some sense. Henceforth
we will focus on excluded minors that are very
highly connected in Tutte’s sense. While we lose
some generality in doing so, we avoid a lot of
technicalities without bypassing the main issues.

Inequivalent representations

Recall that, if A1 and A2 are projectively equivalent
matrices, then they represent the same matroid.
There are matroids that admit many projectively
inequivalent representations over a given finite
field; this is one of the major sources of difficulty
in the area of matroid representation and is the
focus of much attention [6], [8], [9], [14], [27]. This
difficulty is tamed by considering matroids that
have sufficiently high connectivity.

Theorem 9. For each finite field F, there exist inte-
gers k1 and n1 such that each k1-connected matroid
has at most n1 projectively inequivalent represen-
tations over F.

Theorem 9 was proved in 2012 by Geelen,
Gerards, Huynh, and Van Zwam [3]. That paper
develops groundbreaking inductive tools for deal-
ing with highly-connected matroids. The key is to
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weaken the notion of connectivity in a manner com-
patible with Theorem 8. Those connectivity tools
should find wider application in combinatorics,
particularly in graph theory.

Bifurcation of Representations and Fixed
Elements

Let F be a finite field, and let k1 and n1 be the
integers given by Theorem 9. Suppose that e is
an element of an F-representable matroid and
that M and M \ e are both k1-connected. While
Theorem 9 shows that M and M \ e both have
at most n1 inequivalent representations, it does
not describe how the representations are related.
Some representations of M \ e may not extend to
representations of M while others may bifurcate
to two or more inequivalent representations of M ;
this bifurcation is a significant cause of difficulty
for us. Fortunately we understand the root cause
of bifurcation.

Suppose that A is a representation of M \ e
that extends to two projectively inequivalent
representations [A, u] and [A, v] of M . Let

A′ =
( e e′

A u v
)
,

and let M′ = M(A′). Note that swapping e and
e′ defines an automorphism of M′; we say that e
and e′ are clones in M′. Moreover, since [A, u] and
[A, v] are projectively inequivalent, {e, e′} is an
independent set in M′. We say that an element e
is fixed in M if it is not possible to get a matroid
M′ by extending M by an element e′ so that {e, e′}
is an independent clonal pair. The next lemma
follows directly from the discussion above.

Lemma 10. If e is a fixed element in a matroid
M , then no representation of M \ e extends to two
projectively inequivalent representations of M .

The following result shows that highly connected
F-representable matroids contain few elements
that are not fixed.

Theorem 11. For each finite field F, there exist
integers k2 and n2 such that each k2-connected
F-representable matroid has at most n2 elements
that are not fixed.

Theorem 11 was proved by Geelen and Van
Zwam [7]. The proof relies on the main result of [5],
which describes the structure of an F-representable
matroid when we exclude the cycle matroid of a
planar graph as a minor.

Theorems 9 and 11 provide us with a lot of
control over the inequivalent representations of
a matroid. However, as early as 1999, we already
had much stronger results controlling the in-
equivalent representations of GF(5)-representable
matroids [14], [27], and yet we still do not know
the full set of excluded minors.

Figure 5. The Pappus matroid and the
non-Pappus matroid.

Relaxing a Circuit-Hyperplane

Recall that a hyperplane in a matroid M = (E, I) is
a maximal set of rank rM(E)− 1 and a circuit is a
minimal dependent set. If C is both a circuit and a
hyperplane, then we can construct a new matroid
M′ from M by relaxing C, that is M′ = (E, I ∪ {C}).

This construction does not respect representabil-
ity. Consider for example the matroids in Figure 5.
The Pappus matroid is representable over the reals,
which is evident by its straight-line drawing. The
non-Pappus matroid, is obtained from the Pappus
matroid by relaxing the circuit-hyperplane indi-
cated in red. Pappus’s Collection (circa 340 A.D.)
already contained a proof that the non-Pappus
matroid is not representable over the reals. In fact,
the non-Pappus matroid is not representable over
any field.

While the operation of relaxing a circuit-
hyperplane does not behave well with respect
to representation in general, it behaves particularly
poorly with respect to representation over finite
fields. By making this explicit, we obtain a method
for certifying nonrepresentability in the proof
of Rota’s Conjecture. The following result shows
that, if M is a sufficiently large and sufficiently
connected matroid, and ifM′ is a matroid obtained
from M by relaxing a circuit-hyperplane, then M
and M′ cannot both be representable over a given
finite field.

Theorem 12. For each finite field F, there exist
integers k3 and n3 such that, if M1 and M2 are
F-representable matroids on a common ground set
E, where M2 is obtained from M1 by relaxing a
circuit-hyperplane and M1 is k3-connected, then
|E| ≤ n3.

In fact, we proved a stronger result. Note that,
if M2 is obtained from M1 by relaxing C, then
M1 \ e = M2 \ e for each e ∈ C.

Theorem 13. For each finite field F, there exist inte-
gers k4 and n4 such that, if M1 and M2 are distinct
F-representable matroids on a common ground set
E and M1 is k4-connected, then there is a set X ⊆ E
such that |X| ≤ n4 and M1 \ e ≠ M2 \ e for each
e ∈ E −X.
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This result is the hardest step in resolving
Rota’s Conjecture and relies on the full strength
of the Matroid Minors Structure Theory that we
had developed earlier. Much of the proof is graph
theoretic, which is a little surprising given the
statement of the result.

Highly Connected Excluded Minors
In this final section, we indicate how the machinery
developed in the previous section can be combined
to prove a weakening of Rota’s Conjecture. In
particular, we prove that, for each finite fieldF, there
are only finitely many highly connected excluded
minors for the class of F-representable matroids.
This proof exemplifies all of the techniques needed
to prove Rota’s Conjecture in general other than
one technical connectivity result which we discuss
after the proof.

Theorem 14. For each finite field F, there exists
an integer k such that the class of F-representable
matroids has no k-connected excluded minor with
2k or more elements.

Proof. Let k1, k2, k4, n1, n2, and n4 be the integers
given by Theorems 9, 11, and 13. Let

t = n1(n2 + 1)(n4 + 1),

and let

k =max(k1 + n1(n4 + 1), k2 + t, k4 + 1).

Suppose that there is a k-connected excluded minor
M = (E, I) with |E| > 2k.

Throughout the proof we freely make use of
the fact that, for any set Z ⊆ E, M \ Z is
(k− |Z|)-connected.

Let X1 be a t-element subset of E, and let Π be a
partition of X into n1(n4+1) sets of size n2+1. By
Theorem 11, for each Y ∈ Π, there is an element
e ∈ Y that is fixed in M \ (X1 − Y). Let X2 be a
transversal of Π containing one such element from
each set in Π; thus |X2| = n1(n4 + 1).

By Theorem 9,M\X2 has at most n1 inequivalent
representations. SinceM is an excluded minor,M\e
is representable for each e ∈ X2. So there exists a
representationA0 ofM\X2 and an (n4+1)-element
subset X3 of X2 such that A0 extends to a repre-
sentation ofM \e for each e ∈ X3. By construction,
each element e ∈ X2 is fixed inM\(X2−{e}). So, by
Lemma 10, the representation A0 extends uniquely
to a representation of M \ (X2 − {e}). Thus we ob-
tain a unique matrix A such that A|(E −X2) = A0

and, for each e ∈ X3, M(A) \ e = M \ e.
Since M is not F-representable, M ≠ M(A).

Therefore there exists a set B ⊆ E that is a basis
in exactly one of M and M(A). Note that X3 ⊆ B.
Choose f ∈ E − B. Now M \ f and M(A) \ f are
distinct F-representable matroids on the same
ground set. Moreover M \ f , e = M(A) \ f , e for

each e ∈ X3. This contradicts Theorem 13, and
this contradiction completes the proof. �

To prove Rota’s Conjecture in general, we start
with an n-element excluded minor M , as in the
proof above. By Theorem 8, M is “weakly” k-
connected. Then, using the techniques developed
in [3], we find a t-element set X1 such that, after
possibly replacing M with its dual, M \D remains
weakly k-connected for each D ⊆ X1. The rest of
the proof continues as above.
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