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a Rauzy Fractal?
Pierre Arnoux and Edmund Harriss

There is a long tradition, going back to Hadamard
and Morse, of associating symbolic infinite words
with dynamical systems coming from geometry or
mechanics. Conversely, one may try to give geo-
metric representations to infinite words generated
in an algebraic or combinatorial way; elementary
examples, such as the Fibonacci word, produce
well-known dynamical systems, but natural general-
izations give rise to a diverse family of self-similar
sets with fractal boundaries.

Define a sequence of words on the alphabet
of two letters a, b, starting with a and at each
step substituting every a by ab and every b by
a. Elementary algebra shows that the lengths of
the words a, ab, aba, abaab . . . are the Fibonacci
numbers, the ratio of the frequencies of a and

b tends to the golden number φ = 1+
√

5
2 , and

each word is a prefix of the next one. In this way
we define the Fibonacci word, the only infinite
word abaababaab . . . that is invariant by the
substitution rule.

We can understand this word better by giving
it a geometric representation as a broken line in
the plane. Every a (resp. b) gives a step to the
right (resp. a step up). We see (Figure 1) that
this broken line not only has asymptotic slope
1/φ, as expected, but is also a very good discrete
approximation of a line with slope 1/φ.
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Figure 1. Geometric construction of the
Fibonacci word.

This is easily proved. Denote by σ the sub-

stitution rule; the associated matrix

(
1 1
1 0

)
has

one expanding direction associated with the eigen-
value φ, and one contracting direction associated
with the conjugate −1/φ. Therefore the points
associated with the finite Fibonacci words σn(a)
tend to the expanding space. More generally, any
initial word U of the infinite Fibonacci word can be
written U = σ k(ik) . . . σ(i1)i0 for a finite sequence
i0, i1, . . . , ik, where in is the letter a or the empty
word. Using the eigendirections for axes, the coor-
dinates of the corresponding point are therefore
given by finite sums. These are bounded by a
geometric series, convergent in the contracting
direction. The vertices of the broken line, therefore,
lie within a bounded distance of the expanding
direction.
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Even better, if one draws a “corridor” by sliding
the unit square with upper right corner at the
origin along the expanding direction, the broken
line lies within this corridor and is determined
by it. This gives an arithmetic definition of the
Fibonacci word: its nth letter is an a (resp. b) if
[(n+ 1)/φ]− [n/φ] is equal to 1 (resp. 0).

There is a physical interpretation, as a cut-
and-project quasicrystal. A crystal is a periodic
lattice in Euclidean space. To get a subset that
is close to periodic, but not periodic, consider
a cylinder in Rn with irrational direction and
bounded base (the window). Projecting the points
in the intersection of the integer lattice and this
cylinder onto the irrational direction gives the
cut-and-project quasicrystal associated with this
cylinder [Sen95].

For the Fibonacci word, the projection of the
vertices on the contracting direction is a bounded
set whose closure is an interval; the projection on
the expanding line gives a self-similar tiling that is
the simplest possible example of a cut-and-project
quasicrystal, with the window given by the interval
in the contracting direction.

There is also a dynamical interpretation: We
can shift the Fibonacci word by erasing its first
letter; if we consider the closure of the shift-orbit
of the Fibonacci word for the natural topology
on infinite words, we get a very simple symbolic
dynamical system. Its domain is a Cantor-like set,
which projects continuously to the interval, and
the projection conjugates the shift to the rotation
by the golden number.

This is readily seen on the window, which
is divided inyo two intervals corresponding to
the two letters; the point corresponding to the
next vertex of the broken line is obtained by
exchanging the two intervals. This translation of
intervals corresponds to the step to the right or
up associated with each letter. These properties
hold if we change the substitution rule, provided
the associated matrix has determinant ±1.

What happens if we increase the number of
letters? Consider the three-letter substitution
rule a , ab, b , ac, c , a. This rule again
defines an infinite word, and the Perron-Frobenius
theorem shows that the associated broken line,
now in three-dimensional space, has an asymptotic
direction. Since all the eigenvalues except the
leading eigenvalue have modulus strictly smaller
than 1, the same proof shows that the broken line
lies within a bounded distance of the expanding
direction.

Definition. First defined by Gérard Rauzy in 1982,
the Rauzy fractal (also called the central tile) is the
closure of the projection of the vertices of the broken
line to the contracting space along the expanding
line. [Rau82]

To use the word “fractal” is slightly misleading,
since this set is the closure of its interior and
has the same dimension as the contracting plane;
it is the boundary that is fractal. The Rauzy
fractal has remarkable properties. Firstly, it is self-
similar; more exactly, it is divided into three pieces,
corresponding to the three letters, which are the
solutions of a graph-directed iterated function
system. Secondly, these three pieces admit both
a periodic tiling and a nonperiodic self-similar
tiling of the contracting plane. Finally, the broken
line connects all the integer points contained in
the prism given by translating the Rauzy fractal
along the expanding line. These points project to a
self-similar tiling of the expanding line: this gives
another cut-and-project quasicrystal.

The three pieces can be assembled in two ways
to partition the Rauzy fractal; this gives rise to
a dynamical system, an exchange of the three
pieces. This system is conjugate to a rotation
of the torus and also to the symbolic dynamical
system generated by the substitution rule. One can
define three prisms based on the three pieces that
form a fundamental domain for the integer lattice
in three-dimensional space as well as a Markov
partition for the automorphism of the three-torus
associated with the matrix of the substitution rule.

We can define a Rauzy fractal for any substitution
rule whose associated matrix has all but one
eigenvalue of modulus strictly smaller than 1
(so-called Pisot substitution rules) and determinant
±1. All known examples satisfy the properties
above. For examples see Figure 2. This gives rise
to the main unsolved problem of this area:

Conjecture (Pisot conjecture). The one-dimen-
sional tiling generated by any Pisot substitution rule
on d letters with determinant±1 is a cut-and-project
quasicrystal.

This conjecture occurs in several areas with
many different formulations; the dynamical for-
mulation states that the symbolic system (or the
tiling flow) associated with such a substitution rule
has pure discrete spectrum. It was proved for 2
letters by Barge and Diamond. While it is open for
more letters, there is a terminating algorithm to
confirm it holds for any specific substitution rule.
The conjecture implies a number of consequences
including producing a self-similar tiling and giving
a Markov partition for the toral automorphism
defined by a matrix.

Various generalizations have been developed.
For nonunit determinants, the problem adds an
arithmetic component, and one can define a Rauzy
fractal using p-adic space. A multi-dimensional
framework has been proposed recently for tiling
substitution rules, the Pisot families. Here the
expanding line is replaced by the underlying space
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a→ab
b→ac
c→a

a→bc
b→c
c→a

a→abac
b→c
c→a

a→ab
b→c
c→a

Figure 2. Examples of Rauzy fractals.

of the tiling, and the leading eigenvalue by the
expansion matrix of the substitution rule; one
requires that any conjugate of modulus > 1 of an
eigenvalue of the expansion matrix is an eigenvalue
of this matrix, with the same multiplicity. The Pisot
conjecture can be generalized to this setting.
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