
Book Review

Alan Turing: The Enigma: The Centenary Edition
Andrew Hodges
Princeton University Press, May 2012
US$24.95, 632 pages
ISBN-13: 0691155647

Alan M. Turing: Centenary Edition
Sara Turing
Cambridge University Press, April 2012
US$31.99, 193 pages
ISBN-13: 978-1107020580

Alan Turing’s Electronic Brain: The Struggle to
Build the ACE, the World’s Fastest Computer
B. Jack Copeland and others
Oxford University Press, May 2012
US$33.97, 592 pages
ISBN-13: 978-0199609154

Turing: Pioneer of the Information Age
Jack Copeland
Oxford University Press, January 2013
US$21.95, 224 pages
ISBN-13: 978-0199639793

A computer is an existential conundrum masked
as an appliance. While appliances aren’t transcen-
dent, a computer is doubly so. First, it’s the most
malleable tool ever invented by mankind. It allows
us to do many more things than we can possibly
envision. Second, it’s the most powerful amplifier
that the human mind has ever had. It increases our
power to do those things to unimaginable levels.

His Just Deserts:
 A Review of Four Books

Reviewed by Alvy Ray Smith

September 2014	 Notices of the AMS	 891

Malleability and Amplification are the twin glories
of computation.

St. Turing
Alan Mathison Turing was born in London on

June 23, 1912—a century ago, which is the point,
of course. Turing was a fellow at King’s College of
Cambridge by age twenty-two, received an Order
of the British Empire by age thirty-four, became a
Fellow of the Royal Society by age thirty-eight, and
was dead of cyanide poisoning by age forty-one, on
June 7, 1954. The four books we review are part of
the centenary celebration of this remarkable man.
Three are new editions of earlier works, and the
fourth is brand new.

Turing was a mystery to us first-generation
computer science students in the 1960s. Of course
they taught us his great idea of computation but
he himself remained a cipher. Rising out of the
mist that otherwise obscured his person was the
persistent rumor that he had committed suicide.
Then suddenly, in 1983, Andrew Hodges published
his biography, Alan Turing: The Enigma, which
told it all. It finally brought Turing the man into
sharp focus. It explained the mystery: Turing had
been classified top secret in the War, and much of
the information about him had been impounded
for decades by Britain’s Official Secrets Act—es-
pecially the fact that he had played a significant
role in cracking Nazi Germany’s Enigma code at
Bletchley Park.

Topping that revelation was another. Turing
had been openly, even recklessly, gay when homo-
sexuality was still a crime. The suicide rumor was
officially true. When he was arrested for “indecent
acts” in 1952, he couldn’t use the fact that he
had saved England to save himself. The indecent
acts trumped the Secrets Act. Given the choice of

Alvy Ray Smith is a computer graphics pioneer whose
contributions include the co-founding of Pixar. His email
address is alvyray@gmail.com.

DOI: http://dx.doi.org/10.1090/noti1155

descent, between them. If they share the same DNA
on the Y chromosome—a straightforward lab test
establishes this—then they must be related by a
male line. But knowing that a path exists is noth-
ing at all like knowing the actual series of males
who passed the particular DNA down the male
line—often quite difficult to establish.

Hilbert asked if first-order logic had a trick—like
the DNA test—that would decide in a systematic
way if a statement was true without actually doing
the derivation from the obviously true axioms.
This was Hilbert’s Entscheidungsproblem, which
means decision problem. But while decision prob-
lem sounds like a business school topic, Entschei-
dungsproblem suggests a Gotterdämmerung to
shake and renew the world. And it did. I’ll call it
the eProblem since it led to email.

In England in 1934, topologist Max Newman
presented the eProblem in a lecture at Cambridge.
Student Alan Turing was in attendance. Newman
spoke about systematic process—“mechanical
process” was the term he actually used. Newman’s
choice of the words was key. There were no precise
words for the concept yet. That was exactly the
problem.1

The exceedingly literal-minded Turing pro-
ceeded to formalize Newman’s “mechanical pro-
cess” with a paper “machine.” Then he solved the
eProblem with it—in a mighty intellectual leap.
Turing used his machine—now called a Turing
machine, of course—to show that first-order logic
is undecidable. If he had done nothing else—like
save Britain or invent computation—this would
have put him in the scientific pantheon. He had
solved one of the hard problems. But it was his
machine—not his solution—that made him famous
to the larger world. The modern computer is a di-
rect conceptual descendant of Turing’s machine.
The path from concept to realization, however, was
convoluted, and it was along this path that Turing
was to meet perhaps his only failure.

As Turing was solving the eProblem, Alonzo
Church at Princeton University was too. In fact,
Church beat Turing by several months. By the
rules of academia Church had won and the honor
would’ve normally been all his. But Turing’s so-
lution technique was strikingly different from
Church’s, and Newman thought that the math-
ematical world should know about it.

He urged Church to acknowledge Turing’s con-
tribution, and Church did. They both went public,
Church slightly before Turing, with printed papers
in 1936. This was a big step because it was Tur-
ing’s intuitive, industrial, even folksy, machine that
inspired the birth of the computer, not Church’s

prison or chemical castration, he chose castration.
His marathon runner’s body fattened from the
hormones, and he grew breasts. It was the humili-
ation, perhaps, that drove him to eat a poisoned
apple—in a death scene that almost certainly was
lifted straight out of Disney’s Snow White.

Biographer Hodges, a King’s College theoretical
physicist and a member of Britain’s gay liberation
movement, finally parted the veils of secrecy and
embarrassment in Turing’s life. He got the full
story and told it carefully, intimately, and well. And
he brings it up-to-date in the Centenary Edition. It’s
still the Bible of Turing biography.

The government relaxed its hypocritical anti-
gay laws in 1967, and England finally apologized
publicly in 2009 for its appalling mistake. But both
events came too late to forestall the martyrdom
of “St. Turing”. The 2012 worldwide celebrations
of the centenary of his birth were his vindica-
tion—capped off finally by the Queen’s pardon
on Christmas Eve, 2013. And then there’s the fact
that his invention is the ubiquitous key to the
modern world.

He’s Got Algorithm
Intuitively, being careful or systematic about a
process means to break it down into a sequence of
smaller steps, each of which is simple, unambigu-

ous, and obvious. But what happens when
the number of steps in a systematic process
gets large, the number of loops through the
steps multiplies, and the branches of their
possible execution ramify vastly? By asking
questions about systematic processes at the
turn of the twentieth century, mathemati-
cians started to feel their way toward the
notion of computation. They would dis-
cover that this new mathematical animal
was full of surprises.

Starting in 1900 David Hilbert leveraged
his international prestige to focus attention

on hard problems. Famously, Hilbert’s Second
Problem concerned the very foundations of math-
ematics. His 1928 question did too. He posed it as
a question about simple first-order logic.

Hilbert asked if there was a systematic way—
an algorithm we would now say—to decide if a
statement expressed in the logic is true or not. He
did not ask that the algorithm actually generate
a derivation of the statement from the axioms of
the logic—only that it accurately decide whether
one was possible or not. This is curious. If you can
decide that a statement is true, why is it important
to show the actual derivation of it from the axioms?
It’s an important distinction.

In the scholarly genealogy of families, for ex-
ample, it’s possible to know that Joseph from the
seventeenth century, say, was the direct ancestor
of James alive today without formally establishing
a father-to-son path, a generation-by-generation

892	 Notices of the AMS	 Volume 61, Number 8

1David Anderson, “Historical reflections: Max Newman:
Forgotten man of early British computing”, Communica-
tions of the Association for Computing Machinery 56
(May 2013), 29–31.

September 2014	 Notices of the AMS	 893

Not a Toy
To get a handle on Turing’s great idea, consider
this business card (above). It has one corner cut
off and a round hole in the center. Both the front
and the back are inscribed as shown.

Imagine that there’s a paper tape running from
left to right behind the card. It’s divided into
squares, and you can see one square through the
hole in the card. The tape is mostly blank, but there
are typically one or more squares with symbols
on them. I chose the nonblank symbols to be the
numerals 1, 2, 3, 4, and 5, but they could just as
well be #, !, $, %, and &. The point is that they’re
distinct marks, without meaning. In particular,
they’re not numbers. We call them symbols, but
they symbolize nothing. Simply replace a 1 with #,
a 2 with a !, etc., everywhere in the description of
this business card device, and nothing changes—
except, of course, the marks.

The business card device works like this. Sup-
pose the symbol in the hole is a 5, in front orien-
tation. The rule for 5 is at the lower right in this
case. (Pay no attention to rules written sideways.)
It says to replace the 5 with a blank then move the
card right one square. The little glyph at the right
of the rule represents the business card itself. It
means that you should rotate the card to match the
glyph’s orientation. (No glyph means don’t rotate.)
Now repeat these steps for each new hole position.
A rule with no right side means halt.

This isn’t an idle game. The business card device
is a Turing machine.6 It’s a hardware implemen-
tation of Turing’s most famous invention. But a
modern computer can execute any computation,
by simply changing its program. Surely our simple
business card device can’t execute any computa-
tion, can it? Yes, it can. Pixar could compute “Toy
Story” with it! They wouldn’t want to, however. It’s
so tediously slow that it might take the lifetime

abstruse formalization (lambda definability).
They were equivalent concepts, of course—Turing
proved it so—but Turing’s choice of words had
profoundly different consequences.

Church wasn’t the only other claimant. Emil Post
and Stephen Kleene both had equivalent ideas.2 But
Turing’s version influenced the modern notion so
strongly that, to nonmathematicians, the others
pale in comparison. His word computation is the
one that stuck. Today we still use the concepts that
he introduced. For starters, he gave us program-
ming. That makes him the first programmer. Also,
alas, he was the first to write buggy software, as
first pointed out by Post.3

Martin Davis studied under both Post and
Church and wrote influential books explaining
Turing to generations of computer scientists.4 So
it’s no surprise to find him here as author of the
Centenary foreword to Sara Turing’s little book in
which she attempts, uncomprehendingly, to sal-
vage her son’s reputation. Alan’s brother John, in
the book’s unkindest chapter, savages Joan Clarke,
Alan’s short-term fianceé. Davis’s biting analysis
of this brotherly betrayal is worth the price of
admission alone.

And Turing was the first of another computer
tradition. His quirky personality—intense literal-
mindedness, honesty to a fault, social awkward-
ness, and disregard of dress—qualified him as the
first geek, too.5 Newman was afraid that Turing
was fast becoming a “confirmed solitary” and told
Church so. He asked Church to accept Turing as a
graduate student at Princeton, and Church obliged
again. Turing would earn his Ph.D. under Church
in America.

2Jacques Herbrand and Kurt Gödel are sometimes co-
credited with Kleene.
3Emil Post, “Recursive unsolvability of a problem of Thue”,
Journal of Symbolic Logic 12 (1947), 7.
4Martin Davis, The Universal Computer: The Road from
Leibniz to Turing, W. W. Norton & Co., New York, 2000.
5David Leavitt, The Man Who Knew Too Much: Alan Tur-
ing and the Invention of the Computer, W. W. Norton &
Co., New York, 2006.

6Designed 2013 by Alvy Ray Smith, protected by a
Creative Commons Attribution-NonCommercial-
ShareAlike license. See alvyray.com/CreativeCommons/
TuringToysdotcom.htm. Based on UTM(4, 6) proved
universal by Yurii Rogozhin, “Small universal Turing
machines”, Theoretical Computer Science 168 (1996),
215–240.

894 	 Notices of the AMS	 Volume 61, Number 8

Turing’s and von Neumann’s personalities were
diametrically opposed, however. Von Neumann
was a bon vivant, wore ridiculous party hats, and
loved the good salacious limerick.8 A team of the
geek and the bon vivant might not have worked.
There was to be no telling, however, because
Turing, true to character, struck out on his own.
He returned to England, where he was almost
immediately recruited into Bletchley Park. It was
1939, and England was frightened for her life.

Bletchley Park
Turing famously helped crack the encryption
scheme that the Nazis used for war communica-
tions. They employed a devilishly complex encryp-
tion machine called Enigma—its actual trade name.
It recursively scrambled a text message several
layers deep. Descrambling was tedious, superhu-
man work. The Bletchley Park people built large
machines, called Bombes, to aid the humans and
increase the speed of decryption. They weren’t
computers yet, but they were certainly on the path.

Turing needed a partner, not a leader. He was
too much the loner. That’s where Newman—al-
ready his mentor and promoter—would figure
again. Like Turing, Newman returned to England
from Princeton and joined Bletchley Park.

Turing had led the first-wave attack there. New-
man led the second-wave attack, against a newer
German encryption machine—nicknamed Tunny.
This attack employed giant electronic machines,
each called Colossus, the first one built in 1943.9

These almost-computers were functional years
before the almost-computer Eniac in America, on
which von Neumann would cut his teeth. But none
of these machines was stored-program. They were
programmable, but only with hardware cables and
toggles.10

Turing came up with a mathematical insight,
known in Bletchley-speak as Turingismus, that was
key to cracking Tunny. Despite his student-teacher
relationship with Newman and his own Bletchley
Park machine experience with the Bombes, he and
Newman didn’t team up there—and wouldn’t for
a while longer—because decoding texts no longer
excited Turing. His new interest was encoding
voices. The British government sent him back to
America on a special mission.

He was to analyze the X System used for secret
voice communications between Churchill and Roo-

of the universe—but speed is a separable
issue. The point is that this device isn’t
just any ordinary Turing machine. The
business card machine is a universal Tur-
ing machine.

Turing’s first great idea is that what we
mean by a systematic process is embodied
exactly in a Turing machine. That idea—the
Church-Turing Thesis—is a good one in
itself. But Turing’s master stroke was to
show that there’s a single Turing machine
that can do what any other Turing machine
can. It can perform all systematic processes.
It’s one machine that can compute anything
that’s computable. The modern computer
is a descendant of this, the universal Tur-
ing machine.

Turing did it by encoding the descrip-
tion of an arbitrary Turing machine—an
arbitrary algorithm—into a string of sym-
bols. He placed this coded description on
the tape of his universal machine. We call
that a program today, and programmers
call it code. He also similarly placed the
data of the arbitrary machine somewhere
else on the universal machine’s tape. That
machine then had enough information to
simulate the arbitrary machine on arbi-
trary data. The simulation is a systematic
process, so not surprisingly Turing could
design a Turing machine to do it—namely
the universal machine. To change what it
does, just change the program. So Turing
also invented the key notion of the stored-
program computer. What we now mean by
the single word computer is a universal

stored-program machine. We drop it into hardware
only to make it go fast.

How many programs can a computer compute?
Well, there’re so many that you can’t count them.
It’s like asking, how many pieces of music can a
piano play? The computer is the most malleable
tool ever invented by mankind.

Nexus
Turing proceeded to Princeton for his Ph.D. stud-
ies in the late 1930s. His mentor, Newman, soon
came for a six-month visit to the neighboring In-
stitute for Advanced Study—sometimes called the
Princetitute to distinguish it from the university.
John von Neumann—another major player in the
story—was already there. Earlier in the decade
he had taken a stab at Hilbert’s Second with an
improvement to Kurt Gödel’s as yet unpublished
incompleteness result, but Gödel had beat him to
it. Hardly missing a beat, von Neumann attempted
to recruit Turing to the Princetitute. Astonishingly,
Turing rejected this plum offer.7

7George Dyson, Turing’s Cathedral: The Origins of the
Digital Universe, Pantheon Books, New York, 2012.

8Marina von Neumann Whitman, The Martian’s Daugh-
ter: A Memoir, University of Michigan Press, Ann Arbor,
2013.
9B. Jack Copeland and others, Colossus: The Secrets
of Bletchley Park’s Codebreaking Computers, Oxford
University Press, Oxford, 2006.
10I promote all machine acronyms to real names—Eniac,
Ace, Edvac—since that’s how we know them and the
acronyms are long forgotten.

September 2014	 Notices of the AMS	 895

hence Baby. America’s first machines eventually
used Baby’s memory technology too. And Turing,
who finally joined Newman at Manchester, wrote
programs for Baby and a programming manual for
its progeny. Copeland’s well-written, and fresh,
Turing biography is particularly strong on the
Manchester machines—and the Ace machines, of
course.

Suicide?
Then there’s that suicide—or was it? The official
finding was a deliberate act of cyanide poison-
ing, but the nibbled apple wasn’t tested, leaving
plenty of wiggle room for alternative theories.
The authors reviewed cover the gamut. Hodges
is convinced that Turing died by suicide, even
though those hormones had worn off by then. But
Alan’s mother, Sara, never believed it. Neither did
Lyn (Irvine) Newman—Max’s wife and Alan’s dear
friend—who wrote the original foreword to Sara’s
book. Perhaps it was a chemistry experiment gone
bad or Alan being sloppy. That’s Sara’s version.
Copeland’s is murder. That story of Snow White’s
poisoned apple is just too precious. He suggests
that the British government might have taken Tur-
ing out in a fit of McCarthy era insanity.

Amplification
Baby was 10,000 times faster than a human, and
Turing’s Pilot Ace was even faster. But it was
only briefly the “world’s fastest computer”. The
invention of the integrated circuit chip and the
announcement in 1965 of “Moore’s Law” changed
everything. Not the fundamentals, of course—
computation would remain Turing’s computation,
regardless of speed. But Moore’s Law told us to
expect an order-of-magnitude increase in speed
of those computations every five years! Amplifica-
tion of humans went supernova. It’s now reached
a quadrillionfold—unimaginable in Turing’s time.
And it’s headed for a quintillionfold by 2025—un-
imaginable by us even today. That’s because we
can’t see beyond even one order of magnitude,
much less three. Those order-of-magnitude barri-
ers are Amplification’s unknowability. We just have
to get there to see what it means—determined but
not predetermined.

sevelt (later Truman). His American counterpart
was Claude Shannon. They couldn’t talk Enigma
secrets but they could talk all they wanted about
the possibilities of using computers for an excit-
ing possibility now called artificial intelligence.
Computation is about patterns of symbols, not
just numbers.

Unknowability
Turing’s solution to the eProblem was that there is
no decision algorithm. Not surprisingly, consider-
ing their common origin with Turing, there is a
similar consequence in computation—a certain
unknowability—the famous printing problem. You
generally cannot know whether a computation
will ever print a 1, say. Turing proved there’s no
algorithm that, given a program and a blank tape,
can discover whether the program will eventually
print a 1 on its tape. That’s a surprising mystery
that comes with Malleability.11

So a computer is completely determined but
not predetermined. It might not be so unsuited to
modeling the human brain or mind as many think.
Turing certainly thought it was a rich model.

Architecture
It’s not farfetched to claim that essentially all
computers in use today are descendants of the
universal stored-program concept invented by Tur-
ing and the architecture for realizing it invented
by von Neumann. The von Neumann architecture
carries only his name because it appeared alone on
the influential report of 1945 which launched it.12

Turing had an architecture, too, but it didn’t
fare so well. He created it for the early computer,
Pilot Ace, and its progeny. His machine by all rights
should’ve been the first in the world. Why it wasn’t
is a tale of bureaucratic bungling and Turing’s per-
sonal faults, and finally his disillusionment. The
Ace book, edited by Copeland, carefully documents
the rise and fall of Turing architecture.

The machine that was the first computer was
Baby at the University of Manchester, built by
Frederic Williams and Tom Kilburn, with first cry
in 1948.13 It used a von Neumann architecture.
Pilot Ace, with Turing’s architecture, wasn’t birthed
until 1950. Von Neumann’s own machine wasn’t
first because there was a failure to develop a fast
memory device in America. The winning design
came from Williams and Kilburn at Manchester—

11The more famous halting problem wasn’t Turing’s.
Martin Davis, Computability & Unsolvability, New York:
McGraw-Hill, New York, 1958, p. 70, named and proved it.
12John von Neumann, “First draft of a report on the
EDVAC”, Moore School of Electrical Engineering, Univer-
sity of Pennsylvania, 30 June 1945. Unnamed team mem-
bers included Herman Goldstine, Arthur Burks, Presper
Eckert, and John Mauchly.
13Baby was officially the Small-Scale Experimental Ma-
chine.

