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AMS Short Course on Finite Frame Theory: A 
Complete Introduction to Overcompleteness 
This two-day course will take place on Thursday and 
Friday, January 8 and 9, before the joint meeting actually 
begins. It is organized by Kasso A. Okoudjou, Norbert 
Wiener Center, Department of Mathematics, University of 
Maryland, College Park.

Introduction: Hilbert space frames have traditionally 
been used to decompose, process and reconstruct sig-
nals/images. Today frame theory is an exciting, dynamic 
subject with applications to pure mathematics, applied 
mathematics, engineering, medicine, computer science, 
and quantum computing. From a mathematical perspec-
tive, frame theory is at the intersection of many fields such 
as functional and harmonic analysis, numerical analysis, 
matrix theory, numerical linear algebra, algebraic and 
differential geometry, probability, statistics, and convex 
geometry. Problems in frame design arising in applications 
often present fundamental, completely new challenges 
never before encountered in mathematics.

The goals of this short course are to: (1) introduce the 
fundamental tools and examples of frames; (2) describe a 
number of applications that required the design of specific 
frames; (3) present the connection of frames to some of the 
research fields and notions described above; (4) present 
some recent frame-based developments in compressed 
sensing and dictionary learning. 

Frames and Phaseless Reconstruction
Radu Balan, Department of Mathematics and Center for 
Scientific Computations and Mathematical Modeling, Uni-
versity of Maryland, College Park
Frame design for phaseless reconstruction is now part of 
the broader problem of nonlinear reconstruction and is 
an emerging topic in harmonic analysis. The problem of 
phaseless reconstruction can be simply stated as follows. 
Given the magnitudes of the coefficients of an output of a 
linear redundant system (frame), we want to reconstruct 
the unknown input. This problem has first occurred in 
X-ray crystallography starting from the early 20th century. 
In 1985 the Nobel prize in chemistry was awarded to Her-
bert Hauptman (a mathematician) for his contributions 
to the development of X-ray crystallography. The same 
nonlinear reconstruction problem shows up in speech 
processing, particularly in speech recognition.

In this lecture we shall cover existing analysis results 
as well as algorithms for signal recovery including:  
(1) Necessary and sufficient conditions for injectivity; 
(2) Lipschitz bounds of the nonlinear map and its left 
inverses;

(3) Stochastic performance bounds;
(4) Convex relaxation algorithms for inversion;
(5) Least-Squares inversion algorithms.
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Summary: Construction of Finite Frames with
Optimal Ambiguity Function Behavior
John J. Benedetto, Norbert Wiener Center, Department of
Mathematics, University of Maryland, College Park.

TheN×N normalized Discrete Fourier Transform (DFT)
matrix DN = (1/

√
N)(e2πimn/N) gives rise to equal norm

tight frames for Cd, where d ≤ N and the particular frame
is characterized by the specific d columns of DN which
are chosen. In fact, the norm of each frame element is
(d/N)1/2 and the frame constant is 1. Clearly, this frame
is an orthonormal basis for Cd in the case d = N. DN is
a special case of an N × N complex Hadamard matrix
H = HN = (1/

√
N)(hm,n), defined by the properties

of constant amplitude, i.e., each |hm,n| = 1/
√
N, and

orthonormality (unitarity), i.e., HH∗ = I, the identity,
where H∗ is the Hermitian transpose of H.

Let x : Z/NZ �→ C, and define the discrete narrow band
ambiguity function, A(x)(m,n), of x as

A(x)(m,n) =
N−1∑
k=0

x[m+ k]x[k] e−2πikn/N,

and the autocorrelation of x on Z/NZ asA(x)(m,0). These
notions are central to applications such as communications
and radar, see, e.g., [3], as well as a host of other applications
ranging from pure mathematics to physics to statistics.

Now, let Hx be the circulant matrix with first row,
x = (x[0], x[1], · · · , x[N − 1]). We shall say that x is a
constant amplitude zero autocorrelation (CAZAC) sequence
if each |x[n]| = 1/

√
N and ifA(x)(m,0) = 0 on Z/NZ\{0}.

It is elementary to prove that x is a CAZAC sequence if
and only if Hx is a Hadamard matrix.

In this context, it is of interest to construct CAZAC
sequences, e.g., [2], to construct "CAZAC frames" analogous

to DFT frames, and to find optimal ambiguity function
bounds associated with CAZAC sequences using classical
Welch bound estimates as a guideline. We shall make such
constructions and shall see the role played by algebraic
number theory, e.g., the Riemann hypothesis for finite
fields (see [1]), and algebraic geometry in making such
constructions. We shall give a state of the art overview
of the subject and list some open problems. We shall
also integrate this material into the matter of analyzing
finite Gabor frames with CAZAC generating functions.
This provides background for a critical comparison of
such deterministic frames with the probabilistic frames
arising in compressive sensing.
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An Introduction to Finite Frame Theory
Peter G. Casazza, Frame Research Center, University of 
Missouri

Hilbert space frames have traditionally been used in 
signal/image processing. However, today frame theory 
is an exciting, dynamic subject with applications to pure 
mathematics, applied mathematics, engineering, medicine, 
computer science, quantum computing, and more with 
new applications arising every year. Problems in frame 
design arising in applications often present fundamental, 
completely new challenges never before encountered in 
mathematics. 

In this lecture we will introduce the basics of frame 
theory including:

(1) The definition of a Hilbert space frame and the 
basics of the subject. 

(2) The operators associated with frames including the 
analysis, synthesis and frame operators, reconstruction 
Parseval frames and equiangular frames. 

(3) A number of examples to illustrate the concepts and 
the basics of frame construction. 

 (4) Matrix formulations of these concepts including the 
Grammian matrix and its properties. 

(5) Dual frames and their applications. 
(6) Naimark’s Theorem classifying Parseval frames. 
(7) Equivalence of frames, redundancy and
spanning and independence properties of frames.
(8) A brief introduction to some of the significant ap-

plications of frame theory.
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A Primer on Finite Unit Norm Tight Frames
Dustin G. Mixon, Air Force Institute of Technology

Finite unit norm tight frames (FUNTFs) are one of the 
most fundamental objects in frame theory. A FUNTF can 
be efficiently described as the collection of columns of a 
matrix whose rows are orthogonal with equal norm and 
whose columns each have unit norm. The purpose of this 
lecture is to introduce and develop a working understand-
ing of FUNTFs in three different ways:

(i) Describe a variety of applications of FUNTFs.
(ii) Develop an intuition for the frame potential and the 
“physical” behavior of FUNTFs.
(iii) Introduce the theory of eigensteps to construct all 
FUNTFs.
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Compressed Sensing and Dictionary Learning
Guangliang Chen, San Jose State University and Deanna 
Needell, Claremont McKenna College

Compressed sensing is a new field that arose as a 
response to inefficient traditional signal acquisition 
schemes. Under the assumption that the signal of inter-
est is sparse, one wishes to take a small number of linear 
samples and later utilize a reconstruction algorithm to 
accurately recover the compressed signal. Typically, one 
assumes the signal is sparse itself or with respect to some 
fixed orthonormal basis. However, in applications one in-
stead more often encounters signals sparse with respect 
to a tight frame which may be far from orthonormal. In the 
first part of this lecture, we will introduce the compressed 
sensing problem as well as recent results extending the 
theory to the case of sparsity in tight frames.

The second part of the lecture focuses on dictionary 
learning which is also a new field, but closely related to 
compressive sensing. Briefly speaking, a dictionary is  
an overcomplete and redundant system consisting of  
prototype signals that are used to express other signals. 
Due to the redundancy, for any given signal, there are 
many ways to represent it, but normally the spars-
est representation is preferred for simplicity and easy 
interpretability. A good analog is the English language 

Summary: Construction of Finite Frames with
Optimal Ambiguity Function Behavior
John J. Benedetto, Norbert Wiener Center, University of
Maryland

TheN×N normalized Discrete Fourier Transform (DFT)
matrix DN = (1/

√
N)(e2πimn/N) gives rise to equal norm

tight frames for Cd, where d ≤ N and the particular frame
is characterized by the specific d columns of DN which
are chosen. In fact, the norm of each frame element is
(d/N)1/2 and the frame constant is 1. Clearly, this frame
is an orthonormal basis for Cd in the case d = N. DN is
a special case of an N × N complex Hadamard matrix
H = HN = (1/

√
N)(hm,n), defined by the properties

of constant amplitude, i.e., each |hm,n| = 1/
√
N, and

orthonormality (unitarity), i.e., HH∗ = I, the identity,
where H∗ is the Hermitian transpose of H.

Let x : Z/NZ �→ C, and define the discrete narrow band
ambiguity function, A(x)(m,n), of x as

A(x)(m,n) =
N−1∑
k=0

x[m+ k]x[k] e−2πikn/N,

and the autocorrelation of x on Z/NZ asA(x)(m,0). These
notions are central to applications such as communications
and radar, see, e.g., [3], as well as a host of other applications
ranging from pure mathematics to physics to statistics.

Now, let Hx be the circulant matrix with first row,
x = (x[0], x[1], · · · , x[N − 1]). We shall say that x is a
constant amplitude zero autocorrelation (CAZAC) sequence
if each |x[n]| = 1/

√
N and ifA(x)(m,0) = 0 on Z/NZ\{0}.

It is elementary to prove that x is a CAZAC sequence if
and only if Hx is a Hadamard matrix.

In this context, it is of interest to construct CAZAC
sequences, e.g., [2], to construct "CAZAC frames" analogous

to DFT frames, and to find optimal ambiguity function
bounds associated with CAZAC sequences using classical
Welch bound estimates as a guideline. We shall make such
constructions and shall see the role played by algebraic
number theory, e.g., the Riemann hypothesis for finite
fields (see [1]), and algebraic geometry in making such
constructions. We shall give a state of the art overview
of the subject and list some open problems. We shall
also integrate this material into the matter of analyzing
finite Gabor frames with CAZAC generating functions.
This provides background for a critical comparison of
such deterministic frames with the probabilistic frames
arising in compressive sensing.
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where the dictionary is the collection of all words (proto-
type signals) and sentences (signals) are short and concise 
combinations of words. In this lecture, we will introduce 
the problem of dictionary learning, its origin and applica-
tions, and existing solutions.
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Preconditioning Techniques in Frame Theory and 
Probabilistic Frames
Kasso A. Okoudjou, Norbert Wiener Center, Department 
of Mathematics, University of Maryland, College Park

The recently developed algebro-geometric methods 
for constructing FUNTFs are not effective when extra 
constraints on the FUNTFs are added. It is therefore de-
sirable to have generic methods that would allow one to 
transform a frame into a tight one. These methods will be 
analogs of preconditioning methods prevalent in numeri-
cal linear algebra. Recently, various techniques have been 
used to describe a class of frames called scalable frames 
which have the property that their frame vectors can be 
rescaled to result in tight frames. In the first part of this 
lecture, we shall (1) describe the class of scalable frames 
using some convex geometry tools; (2) provide another 
geometric formulation of scalable frames based on Fritz 
John ellipsoid theorem.

Frames are intrinsically defined through their spanning 
properties. However, in real euclidean spaces, they can 
also be viewed as distributions of point masses. In this 
context, the notion of probabilistic frames was introduced 
as a class of probability measures with finite second mo-
ment and whose support spans the entire space. This 
notion is a special case of continuous frames for Hilbert 
spaces that has applications in quantum computing. In 
the second part of the lecture, we shall introduce a proba-
bilistic interpretation of frames, and use this framework 
to: (1) define probabilistic frames as a generalization of 
frames and as a subclass of continuous; (2) investigate 
the minimizers of the frame potential and certain of its 
generalization in this probabilistic setting.
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Algebro-Geometric Techniques and Geometric 
Insights for Finite Frames 
Nate Strawn, Duke University

The finite unit norm tight frames (FUNTFs) have a rich 
geometric structure that can be exploited to carry out 
dictionary optimization for various applications. Algebra-
ically, FUNTFs are quadratic varieties. Geometrically, the 
FUNTFs lie in the intersection of a product of spheres and 
a Stiefel manifold. The interplay between these two per-
spectives illuminates the structure of the FUNTF spaces.

This goal of this lecture is to answer five important ques-
tions about the FUNTF varieties:

(1) What are the singular points?
(2) When is the FUNTF variety a manifold?
(3) What are the tangent spaces at the nonsingular points?
(4) Using elimination theory, can the system of defining 
quadratic equations be solved explicitly?
(5) Are the FUNTF varieties irreducible?

During the course of this lecture, we’ll carry out a series 
of examples to answers these questions.
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Registration
There are separate fees to register for this Short Course. 
Advance registration fees for members are US$108;  
nonmembers are US$160; and students/unemployed or 
emeritus members are US$52. These fees are in effect until 
December 23, 2014. If you choose to register onsite, the 
fees for members are US$142; nonmembers are US$190; 
and students/unemployed or emeritus members are 
US$77. Advance registration starts on September 2, 2014. 
Onsite registration will take place on Thursday, Janu- 
ary 8, at a location to be announced.
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