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It is easy to forget, with our four centuries of
post-Cartesian hindsight, that for thousands of
years arithmetic and algebra were done rhetorically
or geometrically, without the benefit of our familiar
Xx’s and y’s, our pluses, minuses, square root signs,
indices, and other symbols. These symbols make al-
gebraic processes so transparent, so universal, and
so easily generalized that mathematical thought
becomes simpler and more economical.

This simplicity is possible because mathematical
symbols can “evoke subliminal, sharply focused
perceptions and connections” [p. xiii], as Joseph
Mazur puts it in his entertaining and insightful
new book. “Just as with the symbolism in music
and poetry, these mathematical symbols might
also transfer metaphorical thoughts capable of
conveying meaning through similarity, analogy,
and resemblance, and hence are as capable of such
transferences as words on a page. In reading an
algebraic expression, the experienced mathemat-
ical mind leaps through an immense number of
connections in relatively short neurotransmitter
lag times” [p. xiii].

Thinking about the history of mathematics in
terms of the history of symbolic mathematical
notation offers an interesting perspective on
the dramatic increase in mathematical progress
from the seventeenth century onwards. It also
makes us wonder how ancient mathematicians
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made as much progress as they did without an
internalized, subconscious symbolic language to
aid their thinking. Enlightening Symbols offers
food for thought on both these themes: the history
of mathematics and symbolic cognition. But Joe
Mazur’s skill lies in discussing deep ideas in
an engaging and accessible style: this is a book
aimed at the lay reader, although it will also be of
interest to mathematicians and (perhaps especially)
mathematics educators.

Some readers might wonder what exactly is the
definition of “symbol” that applies to mathematics.
In his introduction Mazur gives the etymology of
the word: it comes from the Greek for “token” or
“token of identity” and refers to “an ancient way
of proving one’s identity or one’s relationship to
another. A stick or bone would be broken in two,
and each person in the relationship would be given
one piece. To verify the relationship, the pieces
would have to fit together perfectly” [p. xi].

On a deeper level, the word “suggests that when
the familiar is thrown together with the unfamiliar,
something new is created. Or, to put it another way,
when an unconscious idea fits a conscious one, a
new meaning emerges” [p. xi]. A classic example of
the power of mathematical symbolism is Maxwell’s
use of (a component form of)differential vector
calculus to describe the known facts of electromag-
netism in terms of a field (his contemporaries had
been using “action-at-a-distance” integral calcu-
lus); the bonus was that differentiating Maxwell’s
differential equations then produces mathematical
wave equations, and mathematical wave equations
suggest physical waves. Hertz was the first to
experimentally produce wireless electromagnetic
waves, nearly twenty-five years after Maxwell’s
theoretical prediction of their existence.

But Mazur points out that there is a difference
between powerful, evocative symbolism and sim-
ple notation, the latter being simply a form of
shorthand for words used in the rhetorical for-
mulation of mathematical problems. For instance,
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technically speaking the sign “+” comes into the
category of notation, because + is shorthand for
the letter “t” in the Latin word et, which means
“and”. Nevertheless, the meaning of “+” continued
to evolve after Johannes Widmann introduced
it in his 1489 book on mercantile calculation,
where, according to Mazur, it did not refer to
abstract operation of addition, but simply “meant
‘excess’, as in ‘+2 is two more than what was
expected” [p. 162]. Consequently, many fifteenth-
and sixteenth-century mathematicians favored the
notation “p” and “m” for “plus” and “minus”,
and there were many other signs used for these
operations until “+” and “—” became universal in
the eighteenth century.

The same was true for all our modern math-
ematical signs: abbreviations became ever more
abbreviated until they became true symbols. So,
while “a purist approach would be to distinguish
symbolic representation from simple notation,”
Mazur favors the view that “numerals and all non-
literal notation are different, but still considered
symbols, for they represent things that they do not
resemble” [pp. xi-xii]. With this definition in place,
Part I of Enlightening Symbols is a brief history of
numerals, and Part I is a history of symbolism in
algebra. Part III is more speculative, a brief enquiry
into the nature of symbolic cognition, including dis-
cussion of the similarities and differences between
mathematical and other symbols.

Parts I and II each begin with a useful summary
of key innovators; a quick glance at these lists
shows just how long it took for mathematics to
become the elegant and universal language it is
today. The list for Part I focuses on the evolution
of our Hindu-Arabic numeral system, beginning
in the middle of the first millennium with the
Bakhshali manuscript, followed by the work of
Brahmagupta, whose Brahmasphutasiddhanta of
628 CE contains the first-known use of the concept
of zero as a number. The list finishes with the
thirteenth-century Europeans (including Fibonacci),
who introduced the Indian numerals to Europe, so
it took six centuries to accomplish the transition
from India: first to the Middle East, whose Golden
Age of translation and intellectual development
included the work of the ninth-century Persian
mathematician al-Khwarizmi, and then to Europe. It
seems the Europeans knew about Indian numerals
from the tenth century, but the concept of zero
was so novel that it took another three centuries
for the Indian numerical system to become fully
accepted there: “The difficulty is in distinguishing
placeholder from number. Accepting zero as a
number representing the absence of quantity would
have been a fantastically daring idea” [p. 64].

But Part I covers a much broader period than
the rise of the Hindu-Arabic numerals: it includes
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the ancient number systems of the Babylonians,
the Egyptians, Greeks, Hebrews, Chinese, Aztecs,
and Mayans. To choose just one of the many
interesting facts and points of discussion in this
section, I was intrigued by Mazur’s question, Why
didn’t the Greeks, with all their mathematical
brilliance, “adopt the genius of the Babylonian
system, such as its placeholders and relative ease
of writing large numbers? The Babylonians had the
right idea of positional notation, the clever idea
of using the same digits to represent multiples of
different powers of 60” [p. 21]. Alternatively, the
ancient Chinese had come up with a clever decimal
system that included symbols for powers of ten
up to the fourth, so no placeholder symbol was
needed. Mazur suggests that perhaps the Greeks
used an abacus for calculations (later in Part I,
he discusses the evolution of various abaci) or
perhaps they were more interested in the “grand
scope of mathematics itself” than in calculation.
At any rate, it is astonishing to think how long
it took before the Indian system—“the smartest
system of all’—was developed.

To take another example from this section,
Mazur discusses the widespread medieval art of
finger-counting, as illustrated, for example, in Luca
Pacioli’s Summa de Arithmetica of 1494, a sample
page of which is included as an illustration. But
here as elsewhere in the book, Mazur does more
than simply give an account of the art and its
history: in this case, he also mentions intriguing
research that suggests our brains may be hard-
wired for counting, in the sense that both counting
and finger movement are located in the left parietal
lobe.

Part IT begins with an anecdote about Mazur’s
visit to Oxford’s Bodleian Library in order to peruse
the oldest surviving copy of Euclid’s Elements.
Before being allowed to see this treasure, he had
to take an oath to respect the library’s property,
and then he was asked to sign a special guestbook;
to his amazement, he saw that just twelve lines
above his own signature was that of Isaac Newton!
As for Euclid, Mazur says, “I did not expect
and could not find any symbols for addition,
multiplication, or equality” [p. 86]. Euclid’s work
was entirely geometrical and rhetorical. The first
known symbolic innovation did not occur until the
third century, six hundred years after Euclid, when
Diophantus (or his scribes) used abbreviations for
unknowns, powers, and subtraction, although they
were not the symbols we use today.

Mazur traces the long history of symbolic
algebra, including the work of Diophantus, Brah-
magupta and al-Khwarizmi, a host of fifteenth-,
sixteenth-, and seventeenth-century Europeans
(from Pacioli to Descartes to Newton and Leibniz),
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and finally, in the eighteenth and nineteenth cen-
turies, Euler, William Jones (who introduced the
Greek letter pi to denote the ratio of the circum-
ference to the diameter of a circle), Dirichlet, and
Hamilton. Along the way, he provides a fascinating
tour of algebraic innovations, including the devel-
opment of new number systems, notably complex
numbers and quaternions, which, of course, are
a world away from the ordinary numbers that
developed from counting and measuring concrete
“things.” The square roots of negative numbers had
been seen as “meaningless” right up to the seven-
teenth century, when, “with more general notation,
more attention was paid to the ‘meaningless’ than
had ever been paid before. So that attention called
out the question: What is number?”[p. 148]. Key to
this “more general notation” was Viete’s decision,
in 1591, to use vowels to represent unknowns and
consonants to represent knowns and his “magnifi-
cent idea that those letters were also to be subject
to algebraic reasoning and rules just as much as
numbers.” [p. 144]. Mazur’s enthusiasm makes one
thrill to the grand sweep of big ideas that too often
we moderns mistake for small ones!

It wasn’t until Descartes’s Geometria of 1637
that almost all our modern algebraic notation
was finally in place, so that “on page 69, for the
first time, we find a perfectly readable account [of
polynomial equations] that almost looks as if it is
out of a twentieth-century textbook....The symbol
had finally arrived to liberate algebra from the
informality of the word” [p. 156, xvii].

Fifty years later, Newton and Leibniz had sys-
tematized calculus, and Leibniz’s brilliant notation
is the one we use today. Newton’s “pricked” letters,
such as an x with a dot on top, also survive and
are used to denote derivatives with respect to time.
Mazur gives a brief but interesting comparison
between Newton’s and Leibniz’s concepts of a
derivative and notes the explosion of practical
applications that followed in their wake.

He also notes, however, that amidst all this won-
drous growth of symbolic mathematics, something
was lost: mathematics became more specialized,
less accessible to the public. Nowadays, he says,
mathematics can seem like Lewis Carroll’s nonsense
rhyme Jabberwocky [p. 179]: “The Jabberwocky is
what we get when we first encounter mathematics—
or anything—we don’t understand.” Even applied
mathematics “can be done without reference to any
physically imaginable object other than a graphic
symbol” [p. xviii], and this is why mathematics is
more difficult to explain to the public than is, say,
physics.

It’s interesting to recall, in this context, that
Newton famously chose to write Principia pri-
marily in the language of geometry rather than
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that of his new symbolic calculus. And in de-
veloping the general theory of general relativity,
Einstein, in contrast to Hilbert, chose to eschew a
purely abstract mathematical formulation based
on Lagrangian and Hamiltonian action principles;
instead, he favored “psychologically natural” phys-
ical principles [1, p. 118]. Maxwell, too, was wary
of banishing all physical content from our under-
standing of the symbolic equations of dynamics
[2, p. 210], although he acknowledged that pure
mathematics has given science many ideas whose
discovery would not have been possible otherwise.
His observation certainly applies to the bizarrely
counterintuitive ideas of quantum theory!

To the uninitiated, this careful attention to
balancing symbolic and psychological language is
lost; even for the initiated, exploring the content of
general relativity, for example, can require a lot of
manipulation of graphic symbols whose physical
content is buried deep within the layers of symbolic
scaffolding that underlie the equations. Yet it is
this very complexity that enables mathematical
theories of nature to be expressed so economically.

To give readers some insight into why the
rise of symbols helped mathematics become so
abstract and so powerful, Mazur has included
Part I1I, an absorbing, speculative excursion into
the nature of thought, including mathematical
cognition and the role of symbols in our thought
processes [p. 207]. He tells us, for instance, that
Jared Danker and John Anderson at Carnegie
Mellon found that when subjects were asked to
solve simple algebraic equations, “there was a
strong interactional relationship between retrieval
and representation in mathematical thinking.” Re-
search by Anthony Jansen, Kim Marriott, and Greg
Yelland of Monash University found, in Mazur’s
words, “that experienced users of mathematics had
an easier time identifying previously seen syntacti-
cally well-formed expressions than ill-formed ones.
They found that the encoding of algebraic expres-
sions is based primarily on processes that occur
beyond the level of visual processing. For example,
the well-formed string 7 — x is better recalled than
ill-formed strings such as 7(x” [p. 207].

They also found that “we ‘read’ algebraic ex-
pressions by their syntax, just as we do when
processing sentences of natural language” [p. 208].
I found this fascinating in view of the fact that girls
have long been considered better at language than
at mathematics. Actually, current research [3], [4]
suggests it is simply spatial ability that separates
girls from boys in mathematical achievement and
participation. This research also suggests that the
spatial-ability stereotype itself could be contribut-
ing to the problem [4, p. 8], since there seems
to be no genetic or hormonal basis for a gender
difference in spatial skill [4, p. 7]. Indeed, it is easy
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for preconceived stereotypes to become reality:
in some communities, and at different times in
history, boys have been exposed to more spatially
oriented toys and hobbies than girls, and girls have
been expected to be inferior to boys in math and
physics [see also 5, pp. 10, 19]. So I was intrigued
that when describing his own thought processes on
viewing the algebraic equation x> — ab = 0, Mazur
commented, “I immediately know that x = ++/ab.
But I would also see a square and a rectangle
that are aching to be compared” [p. 193]. I was
intrigued because this is certainly an extremely
simple visualization task, and yet I suspect that
those of us who relate better to language than to
spatial visualization would not automatically see
geometrical interpretations of such equations.

Of course, not all women, or only women, are
spatially challenged; in fact Mazur also discusses
the earlier idea of “brain type” and quotes [p. 201]
Henri Poincaré’s words of a century ago (when
most university students were male): “Among our
students...some prefer to treat their problems
‘by analysis’, others ‘by geometry’. The first are
incapable of ‘seeing in space’. The others are
quickly tired of long calculations and become
perplexed.”

Fortunately, recent research [3] suggests that
spatial skills can be learned; intriguingly, it also
suggests [3, p. 369] that although these skills
“strongly predict performance early in STEM [sci-
ence, technology, engineering, and math] learning,”
it is less important for specialists, who “can rely on
a great deal of semantic knowledge of the relevant
spatial structures without having to perform classic
mental spatial taskslitalics added]....” T have itali-
cized the word “semantic” because this conclusion
seems to fit nicely with the Monash and Carnegie
Mellon research discussed above, and with the
fact that a semantic geometrical connection, as
well as a visual one, can be made between the
square and rectangle implicit in x2 — ab = 0. Mazur
notes that because a and b “do not have specific
values, the [geometric] exercise can only be one of
symbolic manipulation. I would resort to the rules
of algebra learned in school....” [p. 193]. He goes
on to give a subjective account of the algebraic
thought processes involved in solving this little
problem—an account that is necessarily subjec-
tive, because “we all think somewhat differently
with brains that are exquisitely different, using
richly assorted thinking styles that contribute to
and account for the preciousness of being hu-
man” [p. 202].

I have touched only briefly on the content of
Part III, and I have added my own digressions, but
my point is that Enlightening Symbols is not only
informative, it can also serve as a springboard for
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further thought or investigation, depending on the
interests of the reader.

Of course, the book can also be read simply for
its wide-ranging survey of mathematical history
and its enjoyable, sometimes quirky, asides that
make it more than just an accessible chronological
history of mathematical symbolism. Let me take
just one example at random. In 751 CE, during
the battle of Talas between the Arabs and the
Chinese over Kazakhstan, the Kazakhstani Arabs
learned how to make paper from two Chinese
prisoners-of-war. The availability of cheap paper
helped foster the great period of Arab translation,
which preserved ancient Greek texts that had been
lost in the West.

At whatever depth one chooses to read it,
Enlightening Symbols has something for everyone.
It is entertaining and eclectic, and Mazur’s personal
and easy style helps connect us with those who
led the long and winding search for the best ways
to quantify and analyze our world. Their success
has liberated us from “the shackles of our physical
impressions of space”—and of the particular and
the concrete—“enabling imagination to wander far
beyond the tangible world we live in, and into the
marvels of generality” [ p. 154].
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