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The neglect of the exterior algebra is the
mathematical tragedy of our century.

—Gian-Carlo Rota, Indiscrete Thoughts (1997)

his note surveys how the exterior algebra
and deformations or quotients of it
capture essences of five domains in
mathematics:

e Combinatorics  eMathematical physics

e Topology eAlgebraic geometry

e Lie theory

The exterior algebra originated in the work
of Hermann Grassmann (1809-1877) in his book
Ausdehnungslehre from 1844, and the thoroughly
revised 1862 version, which now exists in an English
translation [20] from 2000. Grassmann worked
as a professor at the gymnasium in Stettin, then
Germany. Partly because Grassmann was an original
thinker and maybe partly because his education
had not focused much on mathematics, the first
edition of his book had a more philosophical
than mathematical form and therefore gained little
influence in the mathematical community. The

second (1862) version was strictly mathematical.

Nevertheless, it also gained little influence, perhaps
because it had swung too far to the other side and
was scarce of motivation. Over four hundred pages
it developed the exterior and interior product and
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the somewhat lesser-known regressive product on
the exterior algebra, which intuitively corresponds
to intersection of linear spaces. It relates this to
geometry and it also shows how analysis may
be extended to functions of extensive quantities.
Only in the last two decades of the 1800s did
publications inspired by Grassmann’s work achieve
a certain mass. It may have been with some regret
that Grassmann in his second version had an
exclusively mathematical form, since he in the
foreword says “[extension theory] is not simply one
among the other branches of mathematics, such
as algebra, combination theory or function theory,
bur rather surpasses them, in that all fundamental
elements are unified under this branch, which
thus as it were forms the keystone of the entire
structure of mathematics.”

The present note indicates that he was not quite
off the mark here. We do not make any further
connections to Grassmann’s original presentation,
but rather present the exterior algebra in an
entirely modern setting. For more on the historical
context of Grassmann, see the excellent history of
vector analysis [7], as well as proceedings from
conferences on Grassmann’s many-faceted legacy
[41] and [38]. The last fifteen years have also seen a
flurry of books advocating the very effective use of
the exterior algebra and its derivation, the Clifford
algebra, in physics, engineering, and computer
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science. In the last section we report briefly on
this.

The Exterior Algebra
Concrete Definition

Given a set {ey,...,e,} with n elements, consider
the 2" expressions e;; Aej, A - - - Aej, (here A is just
aplace separator), where the iy, 1o, ..., i, are strictly
increasing subsequences of 1, 2,..., n. From this
we form the vector space E(n) over a field k with
these expressions as basis elements.

Example 1. When n = 3, the following eight ex-
pressions form a basis for E(3) over the field k:

1, e1,ex,e3, e1 Aez,e1 Nes,ep Aes, €1 AexAes.

The element e;; A e;, A .-+ A e, is considered
to have degree r, so we get a graded vector space
E(n). Now we equip this vector space with a

multiplication which we also denote by A. The

basic rules for this multiplication are
) ene =0, i) enej=—ejANe;.

These rules, together with the requirement that A
be associative, i.e.,

iii) (aanb)Aac=an(bAc)
for all a, b, c in E(n), and linear, i.e.
iv) an(Bb+yc)=Barb+yanc

for all B,y in the field k and a,b,c in E(n),
determine the algebra structure on E(n). For
instance,

es A(eg Ae3) =es Aep Aes

= —e1 A es5 A e3 (switch es and eq)

=e; Ae3 Aes (switch es and e3).

Abstract Definition

Here we define the exterior algebra using standard
machinery from algebra. Let V be a vector space
over k, and denote by V®” the p-fold tensor product
VoKV ®g - --®V.The free associative algebra on
V is the tensor algebra T(V) = Eszo V®P which
comes with the natural concatenation product

(V1®- - -®V) - (W1® - -@Ws) = V1®" - - V, QW ®- - -QWs.

Let R be the vector subspace of V ®y V generated by
all elements v® v where v € V. The exterior algebra
is the quotient algebra of T(V) by the relations
R. More formally, let (R) be the two-sided ideal in
T (V) generated by R. The exterior algebra E(V)
is the quotient algebra T(V)/(R). The product
in this quotient algebra is commonly denoted by
A. Let eq,...,e, be a basis for V. We then have
ei A ej =0, since e; ® e; is a relation in R. Similarly,
(ei + ej) A (e; + ej) is zero. Expanding this

0:e,-/\ei+e1-/\ej+ej/\el-+ej/\ej,
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we see that e¢; A ej = —e; A e;. In fact, we obtain
vAw+wAVv=0foranyv,win V. Hence when
the characteristic of k is not 2, the exterior algebra
may be defined as T(V)/(S>V) where

SV={vew+wev|v,weV}

are the symmetric two-tensors in V ® V. The pth
graded piece of E(V), which is the image of V&P,
is denoted as APV.

We shall in the following indicate:

e How central notions in various areas in math-
ematics arise from natural structures on the
exterior algebra.

e How the exterior algebra or variations thereof
are a natural tool in these areas.

Combinatorics I: Simplicial Complexes and
Face Rings

For simplicity denote the set {1,2,...,n} as [n].
Each subset {ij,...,i,} of [n] corresponds to
a monomial e;, A e, A -+ Ae; in the exterior
algebra E(n). For instance, {2,5} < [6] gives the
monomial e> A es. It also gives the indicator vector
(0,1,0,0,1,0) € 7§ (where Z, = {0,1}), with 1’s
at positions 2 and 5. We may then consider
e> A es to have this multidegree. This one-to-
one correspondence between subsets of [n] and
monomials in E(n) suggests that it can be used
to encode systems of subsets of a finite set. The
set systems naturally captured by virtue of E(n)
being an algebra are the combinatorial simplicial
complexes. These are families of subsets A of [n]
such that if X is in A, then any subset Y of X is
also in A.

Example 2. Let n = 6. The sets
{1!2}! {314}! {3! 5}! {4! 516}1

together with all the subsets of each of these four
sets, form a combinatorial simplicial complex.

The point of relating these to the algebra E(n)
is that combinatorial simplicial complexes on [n]
are in one-to-one correspondence with Z5-graded
ideals I in E(n) or equivalently with Z%-graded
quotient rings E(n)/I of E(n): To a simplicial
complex A corresponds the monomial ideal Ip
generated by

{ei Ao Ae, [ i, .., 0r ) € AL
Note that the monomials e; A --- A e, with
{i1,...,ip} in A then constitute a vector space basis

for the quotient algebra E(A) = E(V)/Ix. We call
this algebra the exterior face ring of A.
For the simplicial complex in the example above,
E(A) has a basis:
o degree 0: 1,
e degree 1: ey, ey, e3, e4, €5, €6,
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o degree 2: e1 A er,e3 A eyg,e3 A e5,e4 A es5,e4 A
€6, €5 A €g,
e degree 3: e4 A €5 A eg.

Although subsets {ij,...,i,} of [n] most nat-
urally correspond to monomials in E(n), one
can also consider the monomial x;, - - - x;, in the
polynomial ring k[xy,...,x,]. (Note, however, that
monomials in this ring naturally correspond to
multisets rather than to sets.) If one associates to
A the analog monomial ideal in this polynomial
ring, the quotient ring k[A] is the Stanley-Reisner
ring or simply the face ring of A.

This opens up the arsenal of algebra to study
A. The study of E(A) and k[A] has particularly
centered around their minimal free resolutions and
all the invariants that arise from such. The study
of k[A] was launched around 1975 with a seminal
paper by Hochster [29] and Stanley’s proof of the
Upper Bound Conjecture for simplicial spheres;
see [44]. Although one might say that E(A) is a
more natural object associated to A, k[A] has
been preferred for two reasons: (i) minimal free
resolutions over k[x1,...,X,] are finite in contrast
to over the exterior algebra E(n), (ii) k[A] is
commutative and the machinery for commutative
rings is very well developed.

Since 1975 this has been a very active area of
research, with various textbooks published: [44],
[6], [34], and [22]. For the exterior face ring, see
[16].

Topology

Let u; = (0,...,0,1,0,...,0) be the ith unit coor-
dinate vector in R". To a subset {ii,...,i;} of [n]
we may associate the (r — 1)-dimensional simplex
which is the convex hull of the points u;,,...,u; in
R". For instance, {2,3,5} < [6] gives the simplex
consisting of all points (0,27, A3,0,As5,0) in R,
where A; > 0and A» + A3 + A5 = 1.

A combinatorial simplicial complex A has a
natural topological realization X = |A|. It is the
union of all the simplices in R" associated to the
sets {i1,...,I,} in A.

Example 3. The simplicial complex given in Exam-
ple 2 has a topological realization which may be
pictured as:

9 5
This is the disjoint union of a line segment and a
disc with a handle.
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We then say that A gives a triangulation of
the space X. Now we can equip E(n) with a
differential d of degree 1 by multiplying with
u=e;+er+---+ey. Thend(a) = u A a, and this
is a differential, since d?(a) = u Au A a = 0. The
monomial e;, A ej, A -+ A e, of degree r is then
mapped to the degree (r + 1) sum:

> eine A Ae.

The face ring E(A) is a quotient of E(n), and
so we also obtain a differential on E(A). Letting
E(A)" be the degree r part, this gives a complex

EA L EM) L E@a» S ...
From this complex and its dual we calculate the
prime invariants in topology, the cohomology
and homology of the topological space X. The
cohomology is

H*YE(A),d) = H (X, k) fori > 0,

where H!(X,k) is the reduced cohomology of
X. (For i > 0 this is simply the cohomology
Hi(X,k), while for i = 0 this is the cokernel
H%(pt,k) — HY(X,k).) Dualizing the complex
above we get E(A)* as a subcomplex of E(n)*:

o BEGM)) 2 EQ)) R (B

Here (E(A)*),+1 has a basis consisting of mono-
mials

*
Iy

*
WA ne

(1) e
where {iyp,...,I,} are the r-dimensional faces of
the simplicial complex A. The differential 0 is

contraction with the element u
)
a~ u-d,

sending the monomial (1) to its boundary

d
Z(_l)jez‘io A - /\gi\";/\...elft.
Jj=0
(Here gﬁ means omitting this term.) The homology
H; (E(A)*,0) computes the reduced simplicial
homology of the space X (but with a shift
by one in homological index i). In Example 3
we get H(E(A)*,0) = k one-dimensional, one
less than the number of components of A, and
H,(E(A)*,0) = k one-dimensional, since there is
a noncontractible 1-cycle through the points 3, 4
and 5.
A good introduction to algebraic topology,
starting from simplicial complexes, is [35].
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Lie Theory
Differential graded algebras (DGA) occur naturally
in many areas. They provide the “full story” in
contrast to graded algebras, which often are the
cohomology of a DGA, like the cochain complex of
a topological space, in contrast to its cohomology
ring.

A DGA is graded algebra A = P,.o A, with a
differential d, i.e., d? = 0, which is a derivation; i.e.,
for homogeneous elements a, b in A it satisfies

(2) d(a-b)=d(a) b+ (-1)8Dg.d(p).

The differential d either has degree 1 or —1
according to whether it raises degrees by one or
decreases degrees by one.

What does it mean to give a k-linear differential
d of degree 1 on E(V) such that (E(V),d) becomes
a DGA? Between degrees 1 and 2 we have a map

v L a2y
By the definition of derivation above (2), it is
easy to see that any linear map between these
vector spaces extends uniquely to a derivation
d on E(V). Denote by g the dual vector space

V* = Homg (V, k). Dualizing the above map we get
a map

2

d*
Ng = g
xAy =[xyl

It turns out that d gives a differential, i.e., d® = 0, if
and only if the map d* satisfies the Jacobi identity

(x,[y,z]] + [y,[z,x]] + [z, [x,y]] = 0.

Thus giving E(V) the structure of a DGA with
differential of degree 1 is precisely equivalent to
giving g = V* the structure of a Lie algebra.

The cohomology of the complex (E(V),d) com-
putes the Lie algebra cohomology of g.If g is the Lie
algebra of a connected compact Lie group G (over
k = R), it is a theorem of Cartan [1, Cor.12.4], that
the cohomology ring H*(E(V),d) is isomorphic
to the cohomology ring H*(G,R). A good and
comprehensive introduction to Lie algebras is [31].
The book [18] is much used as a reference book for
the representations of semisimple Lie groups and
Lie algebras. But there are many books on this, and
the above are mentioned mostly because I learned
from these books.

Now denote the dual V* by W, and by S(W) =
Sym (W) the symmetric algebra, i.e., the polynomial
ring whose variables are any basis of W. The pair
E(V) and S(W) is the prime example of a Koszul
dual pair of algebras; see [39], [3] for the general
framework of Koszul duality. Furthermore, when
we equip E(V) with the differential d, the pair
(E(V),d) can be considered as the Koszul dual
of the enveloping algebra U (g) of the Lie algebra
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g; see [40], [17] for the Koszul duality in the
differential graded setting. Koszul duality gives
functors between the module categories of these
algebras, which on suitable quotients of these give
an equivalence of categories.

Combinatorics II: Hyperplane Arrangements
and the Orlik-Solomon Algebra

Simplicial complexes are basic combinatorial
structures, and we have seen in the section
Combinatorics I how they are captured by the
exterior face ring E(A). One of the most successful
unifying abstractions in combinatorics is that of
a matroid (a term giving more associations might
be independence structures), which is a special
type of a simplicial complex. To a matroid there
is associated a quotient algebra of the exterior
algebra with remarkable connections to hyperplane
arrangements.

A prime source of matroids is linear algebra.
Let us consider the vector space k' and let
X1,...,Xm be coordinate functions on this space.
A linear form v = > Ajx; gives a hyperplane in
k™: the set of all points (ay,...,am) € k™ such
that > ;Aja; = 0. A set of linear forms vy,..., vy
determines hyperplanes H;, Ho,...,H,. We call
this a hyperplane arrangement. It turns out that a
number of essential properties of the hyperplane
arrangement are determined by the linear depen-
dencies between the linear forms vi,..., v, We
get a combinatorial simplicial complex M on [n]
consisting of all subsets {ij,...,i,} of [n] such
that v;,,...,v;, are linearly independent vectors.
But there is more structure on this M, making
it a matroid. A simplicial complex M on [n] is a
matroid if the following extra condition holds:

If X and Y are independent sets of M, with the
cardinality of Y larger than that of X, there isy €
Y\X such that X U {y} is independent.

The elements of M are called the independent
sets of the matroid, while subsets of [n] not in M
are dependent. The diversity which the abstract
notion of a matroid captures is illustrated by the
following examples, where we give independent
sets of matroids:

e Linear independent subsets of a set of vectors

{v11 VZ) LI 1V}’l}'
o Edge sets of graphs which do not contain a
cycle.

e Partial transversals of a family of sets
Ay,Ap, ..., AN.

Example 4. Consider the hyperplane arrangement
in C? given by the two coordinate functions v; = x;
and v> = x». The complement C2\H; U H, consists
of the pairs (a, b) with nonzero coordinates; i.e.,
the complement is (C*)2 where C* = C\{0}. Since
C* is homotopy equivalent to the circle S!, the
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complement C2\H; U H» will be homotopy equiva-
lent to the torus S' x S'. The cohomology ring of
this torus is the exterior algebra E(2).

This example generalizes to a description of
the cohomology ring of the complement of any
hyperplane arrangement in C'. The matroid M
of the hyperplane arrangement, being a simplicial
complex, gives by the section Combinatorics I
a monomial ideal Iy, in E(n). The dual element
u=ef+---+ef gives a contraction a 2. u-a
sending e;, A - - - Aej, tO

z(_l)jeil Ao e’;-"_ ces A€,
J

(here ¢; , means omitting this term). Now I + o(Iy)
also becomes an ideal in E(n). The quotient
AM) = E(n)/(Iy + 0(Iy)) is called the Orlik-
Solomon algebra associated to the hyperplane
arrangement. In 1980 Peter Orlik and Louis Solomon
proved the following amazing result [36].

Theorem 5. Let T = C™\ U}, H; be the comple-
ment of a complex hyperplane arrangement. Then
the algebra A(M) is the cohomology ving H* (T, C).

Example 6. Consider u; = x; —xp, U» = Xp—x3, and
u3 = x3 — x; on C3. There is one dependency here,
between uj, u», and uz. Thus the Orlik-Solomon
algebra is E(3) divided by the ideal generated by
the relation

dleg Aex Ae3) =ep Aer —ep Aeg+en A es.

The quotient algebra has dimensions 1, 3, and 2
in degrees 0, 1, and 2 respectively. For the comple-
ment T = C3\H; U H» U H3 we therefore have

H%(T,C) = C, H'(T,C) = C3, H3(T,C) = C°.

For hyperplane arrangements, or more gen-
erally, for matroids, the Orlik-Solomon algebra
has been much studied recently, [47], [15]. The
algebraic properties of the Orlik-Solomon algebra
give a number of natural invariants for hyperplane
arrangements.

Mathematical Physics
The Clifford algebramay be viewed as a deformation
of the exterior algebra. The exterior algebra E(V)
is defined as the quotient algebra T(V)/(S2V).
Fix a symmetric bilinear form b : SV — k. Let
R = {r —b(r)|r € S2V}. The Clifford algebra is
the quotient of the tensor algebra by the relations
R:

Cly =T(V)/(R).
Like the exterior algebra E(V) = E(n) it has a
basis consisting of all products e;, - - - - - e;, for
subsets {i; < --- <i,} of {1,...,n} and so is also
of dimension 2" as a vector space over k. Note that
we get the exterior algebra when the bilinear form
b =0.
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Clifford algebras are mostly applied when the
field k is the real numbers R. Let V = (i) be a
one-dimensional vector space generated by a vector

i, and let the quadratic form be given by i? k.
Then the associated Clifford algebra is the complex
numbers. When V = (i, j) is a two-dimensional
space and

ioil -1, iej+jeil0, jejb -1,

we obtain the quaternions. In general, for a real
symmetric form b, we may find a basis for V such

that if x1, ..., x, are the coordinate functions, the
form is
p n=p+q
2 2
Z Xi — Z Xi
i=1 i=p+1

Such a Clifford algebra is denoted Cl, 4.

So Clp,; is the complex numbers and Clp is
the quaternions. Clifford algebras have interesting
periodic behaviour: Cly1,4+1 is isomorphic to
the 2 x 2-matrices M>(Cly 4), and each of Cly.g4
and Clp 443 is isomorphic to the 16 x 16-matrices
Mi6(Clp,4). Thus Clifford algebras over the reals
are essentially classified by Cl, and Cly 4 for p,
g < 7. For a nice introduction to Clifford algebras,
see [19].

When Cl, 4 is a simple algebra and Cl, 4 —
End(W) is an irreducible representation of Cl, 4
then W is called a spinor space. These represen-
tations occur a lot in mathematical physics. For
instance, CI; 3 is isomorphic to M4(R), and this
representation on R* is the Minkowski space with
one time dimension and three space dimensions.
A pioneer in the application of Clifford algebras
in mathematical physics is David Hestenes [23],
[24], [25], where he envisions the complete use of
it in classical mechanics. He calls this geometric
algebra. The book [8] offers a leisurely introduction
to the application of geometric algebra in physics.
Basil Hiley is another advocate for the algebraic
approach to quantum mechanics [28]:

...that quantum phenomena per se can
be entirely described in terms of Clifford
algebras taken over the reals without the
need to appeal to specific representations
in terms of wave functions in a Hilbert
space. This removes the necessity of using
Hilbert space and all the physical imagery
that goes with the use of the wave function.

Algebraic Geometry

Finitely generated graded modules over exterior
algebras seem far removed from geometry. How-
ever, we shall see that they encode perhaps the
most significant invariants of algebraic geometry,
the cohomological dimensions of twists of sheaves
on projective spaces.

VOLUME 62, NUMBER 4



Example 7. Let n = 2 and E = E(2). Consider the
map of free E-modules:
gLl e,

Writing E2 = Eu; ® Eu> where u; and u, are gen-
erators of this module, the cokernel of this map
is a module M = Eu; @ Euy/{eru; + eju»). Such a
map may, as we shortly explain, be completed to a
complex of free E-modules (we let d° = d):

40-|€2
E a

d’lz[el A 62]

(3) e 0
dl{el 22}
EZ 0 el

E3 — F* -

It is a complex since dP o dP~! = 0, as is easily
verified. It is also exact at each place, meaning that
the kernel of d” equals the image of d?~! for each
p. Thus it is an acyclic complex.

Every finitely generated graded module M over
E = E(V), or equivalently map d, gives rise to
such an acyclic complex. In the example above the
ranks of the free modules follow a simple pattern,
1,2,3,4,..., but in general, what are these ranks?
Can they be given a meaningful interpretation?
Indeed, a discovery from 2003, [13], tells us this is
the case.

As amodule over itself E(V) is both a projective
and an injective module. Given a finitely generated
graded module M over E(V), one can make a
minimal free (and so projective) resolution

P* — M, where PP = W] erE
qe?

(the W} are vector spaces over the field k whose
elements are considered to have degree g) and a
minimal injective resolution

M —1I*, wherel” = W] erE
qez

and splice these together into an acyclic complex
(as in Example 7),

4 T:---—-Pl-pPlop o2~
called the Tate resolution of M. So we get a
correspondence:

(5) graded modules over E(V)

~» Tate resolutions over E (V).
Now let us pass to another construction starting
from the finitely generated graded module M =
EB,E-’:Q M; over the exterior algebra E(V). Let W

be the dual vector space V*. The multiplication
V ®x M;j — M;;1 gives a map

(6) M; - W @k M.
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Let S = Sym(W) be the symmetric algebra (a
polynomial ring). The map (6) gives rise to maps

(7)

SO My L S My e A S My —
These maps give a (bounded) complex of S-modules,
ie., di*! o d' = 0 (This is a correspondence within
the framework of Koszul duality, mentioned in
the section “Lie Theory”.) Any finitely generated
graded S = Sym(W)-module may be sheafified to
a coherent sheaf on the projective space P(W). In
particular, we may sheafify the above complex and
get a complex of coherent sheaves:

(8)
graded modules over E(V)
~» bounded complexes of coherent sheaves
on P(W).

This correspondence is from 1978 [4] and is
the celebrated Bernstein-Gelfand-Gelfand (BGG)
correspondence. Somewhat more refined, it may be
described as an equivalence of categories between
suitable categories of the objects in (8).

The amazing thing is that if M via the BGG-
correspondence (8) gives a coherent sheaf F
on P(W) (this means that the sheafification of
the complex (7) has only one nonzero cohomol-
ogy sheaf ), then we can read off all the sheaf
cohomology groups of all twists of F from the
Tate resolution T which we get via the correspon-
dence (5).

Theorem 8 ([13, Thm. 4.1]). If M via the BGG-
correspondence (8) gives a coherent sheaf F on the
projective space P(W), and the Tate resolution of
M is (4), then the sheaf cohomology

HP (P(W), F(q)) = WE™.

Returning to the initial Example 7 in this section,
the sheaf corresponding to this module M is
the structure sheaf Op: on the projective line
Pl = P(W). The Tate resolution (3) therefore tells
us that for d > 0, the sheaf cohomology

kitl, d=0

0 1 . — El )
HY(P*, Op1(d)) {0, 4<0,
ki, —-d<0
1 1 _ _ ’ [
H' (P!, Opi (~d)) {O’ e

An important feature of a Tate resolution T
is that it is fully determined by an arbitrary

differential T' %~ Ti*1. This is because T<' is a
minimal projective resolution of imd', and T> is a
minimal injective resolution of im d'. This gives us
incredible freedom in construction. An arbitrary
homogeneous matrix A of exterior forms gives a
map

d
9) PwleE= Pw! eE.
q q
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The module M = imd, over the exterior algebra
then gives a complex of coherent sheaves F° on
P(W) by (8), and all such bounded complexes
on P(W) do (in a suitable sense) come from
such a homogeneous matrix A of exterior forms.
Thus bounded complexes of coherent sheaves on
projective spaces can be specified by giving a
homogeneous matrix A of exterior forms, and any
matrix A will give some such bounded complex.
The Tate resolution associated to M and F° is the
complex we obtain by taking a minimal projective
resolution of kerd, in (9) and a minimal injective
resolution of cokerd,, and this resolution tells
us the cohomology of the complex of coherent
sheaves.

Example 9. Let V be the five-dimensional vector
space generated by {ej, e», e3, e4, e5}. The matrix

A= [el/\ez 65/\61]
e3 Nes exNey
gives a map E°> — E2. Via the BGG-correspondence
(8) this gives the celebrated Horrocks-Mumford
bundle on P* discovered over forty years ago [30],
see also [13, Section 8]. In characteristic zero this
is essentially the only known indecomposable rank
two bundle on any projective space of dimension
greater or equal to four. It is an intriguing problem
to use the methods above to try to construct new
bundles of rank < n — 2 on a projective space

P", but to our knowledge nobody has yet been
successful.

erx Ne3
egNey

e3Neéy
es Nep

e4Nes
ey Nes

Tate resolutions and algebraic geometry are
treated in the books [14] and [12]. The software
program [21] contains the package BGG for doing
computations with Tate resolutions.

Modelling and Computations

Thelast fifteen years have seen a flurry of books and
treatises giving applications of exterior algebras
and Clifford algebras, usually under the name
“geometric algebra.” Groups at the University of
Cambridge and the University of Amsterdam have
been particularly active in promoting geometric
algebra. The book Geometric Algebra for Physicists
[8] by C. Doran and A. Lasenby is a very well written
and readable introduction to exterior algebras,
Clifford algebras, and their applications in all
areas of physics, following the ideas outlined by D.
Hestenes. A more advanced treatment is [2]. The
book Geometric Algebra for Computer Scientists:
An Object Oriented Approach, [10] by L. Dorst, D.
Fontijne, and S. Mann shows geometric algebra as
an effective tool to describe a variety of geometric
models involving linear spaces, circles, spheres,
rotations, and reflections. In particular it considers
the conformal geometric model developed in
[32]. Geometric Algebra for Engineers, [37] by C.
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Perwass similarly applies geometric algebra to
models occurring in engineering: camera positions,
motion tracking, and statistics. It also considers
numerical aspects of its implementation. Other
books on geometric algebra and its use in computer
modelling and engineering are [26], [27], [43], [9],
[45], and [46]. The book [11] gives a panorama of
applications by a wide range of authors.

The comprehensive book Grassmann Algebra [5]
considers all aspects of computations concerning
the exterior algebra with Mathematica. It treats
the exterior, interior, and regressive products
and geometric interpretations. A second volume
treats the generalized Grassmann product which
constitutes an intermediate chain of products
between the exterior and interior products, and
applications to hypercomplex numbers and to
mechanics. Other treatises with a more purely
mathematical focus are [42] and [33].
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