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I
n a paper published in 1952, J. L. Coolidge
(1873–1954) appreciates that the story of
curvature is “unsatisfactory” [2], and he
points out that “the first writer to give a
hint of the definition of curvature was the

fourteenth century writer Nicole Oresme, whose
work was called to my attention by Carl Boyer.”
Then Coolidge comments: “Oresme conceived the
curvature of a circle as inversely proportional
to the radius; how did he find this out?” The
scholarly conditions of the fourteenth century
make this discovery phenomenal and the question
as to how it was achieved worth researching. In
the present article we describe how a fourteenth-
century scholar (i) gave a correct definition for
curvature of circles and attempted to extend it
to general curves, (ii) tried to apply curvature to
understand the behavior of real-life phenomena,
and (iii) produced in his research a statement that
anticipates the fundamental theorem of curves in
the plane.

In various cases Oresme’s work is not cited
when the history of curvature is discussed (e.g., [5],
[8]), while some authors (e.g., [1], p. 191) make note
of his contribution to this concept. Several scholars
have even concluded that the medieval sciences
contributed very little to the modern scientific
revolution. In addressing this perception, Edward

Isabel M. Serrano is an undergraduate student at California
State University, Fullerton, pursuing two majors in mathe-
matics and history. Her email is iserrano@csu.fullerton.
edu.
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The Rouen Cathedral where Nicole Oresme
served first as canon, then as dean of the

Cathedral, after 1362.
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Grant [3] writes: “Even if the Middle Ages made
few significant contributions to the advancement
of the sciences themselves, or none at all, […] if
no noteworthy medieval contributions were made
to help shape specific scientific advances in the
seventeenth century, in what ways did the Middle
Ages contribute to the Scientific Revolution and,
more to the point, lay the foundations for it?” We
describe in the present article that curvature is one
of the concepts that was first defined in the Middle
Ages. The importance of the idea of curvature is
described in many works (e.g., [1], [5], [8], [10]), and
we don’t feel we should elaborate on this point.

Nicole Oresme was born around 1320 in the
village of Allemagne, near Caen, today Fleury-sur-
Orne [6]. The first certain fact in his biography is
that he was a “bursar” of the College of Navarre
from 1348 to October 4, 1356, when he became
a Master. The College of Navarre, established
by Queen Joan I of Navarre in 1305, focused
on teaching the arts, philosophy, and theology.
Oresme’s major was in theology. As a student, he
had to observe the code at the College of Navarre,
where the students were required to speak and
write only in Latin; his ability to work in Latin would
prove critical in his future work. Oresme studied,
among others, with Jean Buridan and Albert of
Saxony. It was at this institution where he wrote
his most important works, e.g., De proportionibus
proportionum, which is of particular importance
for the history of mathematics, or Ad pauca
respicientes, of interest for the history of ideas
in celestial mechanics. Oresme remained Grand
Master of the College until December 4, 1361, when
he was forced to resign [6]. On November 23, 1362,
he became a canon of the Rouen Cathedral (a place
of major importance in the history of France), and
on March 18, 1364, he was promoted to dean of
the Cathedral. Oresme was in that period king’s
confessor and adviser, and some time before 1370
he became one of Charles V’s (1364–80) chaplains;
at the king’s request he translated from Latin into
French Aristotle’s Ethics (1370) and Politics, as well
as Economics.

As Marshall Clagett points out [7], it is very likely
that De configurationibus was written in the interval
1351–55. To better depict this historical period,
we recall here that during this period, Geoffrey
Chaucer, later considered the father of English
literature, was still a child in London. These are
the same years when Giovanni Boccaccio wrote the
Decameron, largely completed by 1352. In Florence,
Francesco Petrarch, the first to coin the name of
the “Dark Ages”, was writing in Latin De vita
solitaria. One of the main historical references for
that historical period is Jean Froissart’s Chronicles,
describing the battles from the Hundred Years’
War and the Black Death, impacting most of Europe
in the interval 1346–53. The cathedral Notre-Dame
de Paris was just completed a few years before, in

1345, and dominated the skyline of medieval Paris.
In short, this period of time was infested with
conflict and tragedy, greatly occupying civilian
minds and making the main focus of life survival.
The poets and the scientists worked in many cases
in isolation for long intervals of time.

In the time frame in which Oresme wrote, the
language of functions was not yet used in math-
ematics. It is impressive that Oresme reached
the concept of curvature before the concept of
function was established. He had to invent and
express his thoughts without several fundamental
mathematical concepts to refer to, thus making
his explanations on curvature unique. These cir-
cumstances justify why Marshall Clagett is correct
in discussing a “doctrine” [7] when he described
Oresme’s original contributions.

Clagett’s critical edition including the treatise
De configurationibus [7] was published in 1968,
over a decade after J. L. Coolidge was hoping to
see a more complete history of curvature. Clagett
(1916–2005) notes (see [7], pp. 50–51) that the first
instance of Oresme’s comments on representation
of quantity by either a line or surface of a body
are his remarks to Questions on the Geometry of
Euclid, more precisely when he discusses questions
10 and 11. Oresme refers to other authors, such
as Witelo and Lincoln (i.e., Robert Grosseteste),
“who in this manner imagine the intensity of light,”
and to “Aristotle, who in the fourth [book] of the
Physics imagines time by means of a line.” He also
includes “the Commentator [Campanus] in the fifth
[book] of this work [the Elements] where he holds,
in expounding ratios, that everything having the
nature of a continuum can be imagined as a line,
surface, or body.” Clagett points out ([7], p. 51) that
the reference to Aristotle’s work is “to the effect
that every magnitude is continuous, and movement
follows magnitude; therefore movement and hence
time are continuous, for motion and time seem to
be proportional.” In short, Oresme’s “doctrine” is
actually a theory describing how quantities could
be described by graphs. The concept was novel
at that time, although it was based on Aristotle’s
earlier work.

In the first part (the first forty chapters) of De
configurationibus, Oresme sets up the groundwork
for the doctrine of configurations; then he applies
the doctrine to qualities, focusing on “entities”
which are permanent or enduring in time. While
discussing these elements, he suggests that his
theory could explain numerous physical and psy-
chological phenomena. In the second part of De
configurationibus (the next forty chapters), Oresme
describes how graphical representation can be ap-
plied to “entities that are successive”; in particular,
he applies the doctrine of “figurations” to motion.
He concludes this part with several examples that
could be extended to psychological effects, includ-
ing the perceptions that are described as magic.

October 2015 Notices of the AMS 1031



Finally, Oresme describes external geometrical
figures used to represent qualities and motions. He
compares the areas of such figures and concludes
that by comparing the areas, one may have a
basis for the comparison of different qualities and
motions.

The donjon tower of the Château de Vincennes,
in Paris, is 52 meters high and represents the
tallest medieval fortified structure in Europe.

King Philip VI of France started this work about
1337. The work was completed during Charles

V’s reign. When Nicole Oresme was a scholar in
Paris, this donjon was in the process of being

erected. Later on, during the reign of Charles V,
this donjon served as a residence for the royal

family. Its buildings are known to have once
held the library and personal study of Charles V.

To fully describe his theory, Oresme begins his
De configurationibus with the following clarifica-
tion: “Every measurable thing except numbers is
imagined in the manner of continuous quantity.”
Then he pursues a discussion of the latitude and
longitude of qualities, followed with the presenta-
tion of their quantity. He leads into his argument

that qualities can be “figured.” He spends several
chapters discussing suitability of figures and shape
of various particular cases. This discussion sug-
gests an early analysis of curves in general position,
if we are to refer to the modern concept. One
important distinction appears in chapter I.xi, where
Oresme examines the differences between uniform
and difform qualities. He continues his focus on
this topic in I.xiv with a discussion of “simple
difform difformity,” which is of two kinds: simple
and composite. In this chapter he uses “linea curva”
for a curve, and “curvitas” to express its curvature.
In I.xv he begins describing four kinds of simple
difform difformity, which are explained by drawing
graphs. There is little doubt that the author builds
here an early approach to variable quantities and
their corresponding graphical representation. After
this extensive discussion, performed without any
algebraic notation, Oresme approaches “surface
quality.” Finally, in chapters I.xix, I.xx, and I.xxi, he
introduces curvature. Additionally, in chapters I.xv
and I.xvi, Oresme describes graphs that are concave
and convex. Due to the context of his analysis,
Oresme actually performs the first exploration of
the possible connections between curvature and
convexity.

A particular case in this doctrine of qualities is
represented by curvature (chapter I.xx), endowed
with “both extension and intensity.” Oresme writes
(in M. Clagett’s translation, [7], p. 215): “We do
not know with what, or with regard to what, the
intensity of curvature is measured. For now it
appears to me that there are only two [possible]
ways [to speak of the measure of curvature]. The
first is that the increase in curvature is a function of
its departure from straightness, i.e., of its distance
from straightness. This is [to be measured] by
the quantity of the angle constituted of a straight
line and a curve, e.g., an angle of contingence
or perhaps another angle also constructed from
a straight line and a curve.” This very intuitive
description is very consistent with the modern
study of signed curvature and its relationship with
the change of turning angle with respect to arc
length. Even further, Nicole Oresme reaches a more
precise description. He writes specifically that the
curvature of the circle is the inverse of its radius
(in chapter I.xxi, where Oresme cites Aristotle’s
On Curved Surfaces). He delves more into this
concept by covering more general curves: “Difform
curvature is composed of an infinite number of
parts of different nature and unrelatable [to each
other]” (I.xx). Thus, his study of curvature is not
limited to circles but is extended to more general
cases. However, Oresme does not have any precise
procedure to compute such a general curvature.

In classical differential geometry, the so-called
fundamental theorem of curves states (e.g., [9],
p. 29) that if two single-valued continuous functions
κ(s) and τ(s), for s > 0, are given, then there
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The Southern Wall of the Bayeux Cathedral.

exists one and only one space curve, determined
by its position in space, for which s is the arc
length, measured from an appropriate point on the
curve, κ is the curvature, and τ is the torsion. This
result was obtained in the nineteenth century. It
is very surprising to read in Oresme the following
reasoning (representative of Oresme’s style and
his intuition), which leads to a statement quite
similar in conclusion to the fundamental theorem
of curves ([7], p. 219):

No intensity of difform curvature can be
related to another dissimilar curvature in
a ratio of 2 to 1 or [even] in a ratio of√

2 to 1, i.e., either in a commensurable or
incommensurable ratio—or, universally, in
any ratio which could be found as existing
between line and line. The conclusion is hence
evident that intensity of curvature is not to be
imagined by lines. Nor is there some curvature
which is similar in intensity to some other
quality of another species. Nor is curvature
to be imagined by some figure. Nor is its
intensity to be assimilated to the altitude of a
figure, because the altitude of every figure is
designated by lines. Finally, it is evident from
this that no curvature is uniformly difform,
for, by reason of accident, “uniformly difform”
exists throughout a whole subject of the same
nature and where the ratio of intensity to
intensity, or excess of intensity, in the diverse
parts is as the ratio of distance to distance,
and consequently as the ratio of lines, as it
is evident from the descriptions in chapter
eleven, and this [reduction to ratios between
lines] can not, as was just said, be suitable for
difform curvature. And so it follows finally
that every difform curvature is difform in a
way different from that in which any other
quality of another kind could be, and [so it is
difform] with a strange, marvelous, diverse
kind of difformity.” 1

1The last sentence in the original is ( [7], p. 218): “Et inde se-
quitur ulterius quod omnis curvitas difformis est difformis
aliter quam aliqua alia qualitas alterius generis possit esse
et quadam extranea, mirabili, et diversa difformitate.”

Oresme does not work with the distinction
between curvature and torsion for skew curves; all
of his discussion is about planar curves, and the
uniqueness part of the statement is suggested by
“strange, marvelous, diverse” in the last sentence
from the excerpt cited above. This shows that
curvitas difformis is special in a unique way.

The generality of Oresme’s doctrine resides in
the attempt to model various phenomena by this
approach. In De configurationibus we encounter
his first attempt to apply his doctrine in chapter
I.xxiv, where he discusses “On the variety of
natural powers dependent on this figuration.” He
writes [7], p. 233: “It is manifest from natural
philosophy and experience alike that all natural
bodies determine in themselves their shapes, as,
for example, animals, plants, some stones, and
the parts of [all of] these. They also determine in
themselves certain qualities which are natural to
them. In addition to their shape that these qualities
possess from their subject, it is necessary that they
be figured with a figuration which they possess
from their intensity—to employ the previously
described imagery.” To mention just one example,
in chapter II.xl, titled “On the difformity of joys”,
Oresme discusses a subjective perception in the
same terms as a physical quantity: “One ought
to speak in the same way concerning a joy or a
pleasure, which I suppose to be a certain quality
extended in time and intended in degree.”

The question asked by Julian Coolidge is where
the idea of curvature comes from. There are
many elements to suggest that the definition of
curvature for curves is due to Nicole Oresme.
One strong argument is that this definition was
needed for his doctrine. Oresme developed it to
serve his theoretical goals and to understand his
configurations. Furthermore, Oresme builds upon
Aristotle’s conclusions and applies these ideas
to a larger array of concepts where his graphs
(“configurations”) could be used. Some of the
concepts he is interested in are today considered
part of mathematics, some part of physics, while
others approach the realm of psychology (e.g., the
study of the question why certain perceptions lead
to magic).

If Oresme clearly reached the first recorded
definition of curvature for curves, then why do
we see a certain hesitation to discuss and refer
to his work? Perhaps because after the following
generation his influence faded, his work was not
continued, and his heritage was less understood.
The historical reality of the Hundred Years’ War
limited the dissemination of Oresme’s ideas. Later
authors, such as Christiaan Huygens and Isaac
Newton, discovered and developed fundamental
concepts independently and did not build on
Oresme’s heritage. When mathematics benefited
from the important revolution in sciences after
1600, Oresme’s texts were perceived as inherited
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Decorative architecture of the Rouen Cathedral.

from a different paradigm. However, by looking
back at this work today, we should not imagine
that De configurationibus is an obscure medieval
text that could be described as “religious science.”
Instead, it should be looked on as the initial
approach to introduce curvature in the context of
an early theory.

Addressing this type of understanding of the
medieval books and types of arguments, Edward
Grant writes in [3], p. 84: “Theologians had remark-
able intellectual freedom and rarely permitted
theology to hinder their inquiries into the physical
world. If there was any temptation to produce a
‘Christian science,’ they successfully resisted it.
Biblical texts were not employed to ‘demonstrate’
scientific truths by blind appeal to divine authority.
When Nicole Oresme inserted some fifty citations
to twenty-three different books of the Bible in his
On the Configurations of Qualities and Motions, a
major scientific treatise of the Middle Ages, he did
so only as examples, or for additional support, but
in no sense to demonstrate an argument.” There is
no better answer to address the aforementioned
concerns.

Our article does not aim more than to contribute
to a long overdue discussion on the first recorded
definition of curvature, pursuing J. L. Coolidge’s
suggestion for a more complete history of this
fundamental mathematical idea.
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