Daniel M. Kan (1927–2013)

Clark Barwick, Michael Hopkins, Haynes Miller, and Ieke Moerdijk

LIFE

In Holland

Daniel (or Daan in Dutch) M. Kan was born on August 4, 1927, and grew up as the only child in a liberal Jewish family in the southern quarter of Amsterdam, where his father worked as a lawyer. In 1939 he entered the Barlaeus Gymnasium, a secondary school in the center of Amsterdam, then and to this day one of the best schools in Amsterdam. He was only able to stay there for two years, because after the school year 1940–41, under German occupation Jewish children were no longer allowed at that school. Instead, he went to the Jewish Lyceum (Joods Lyceum).

In the summer of 1943 a very difficult time for Kan and his family began. Together with his parents, he was picked up and sent to Westerbork, a transition camp near the eastern Dutch border. They stayed there for half a year and were next sent to Bergen-Belsen, where they remained for fifteen months. Both of his parents died of typhus soon after liberation. Dan himself barely survived, and he stayed in Germany for another three months to recover.

In the summer of 1945 Kan returned to Amsterdam, where he entered the last year of high school at the Barlaeus Gymnasium. He was interested in mathematics, but the prospect of becoming a school teacher or having a job in an insurance firm did not appeal to him. It was the Dutch topologist L. E. J. Brouwer who pointed out other career options to him that a degree in mathematics would offer. Consequently, Kan started his university studies in 1946 at the University of Amsterdam, in the program Mathematics and Physics with Chemistry. In 1948 Kan received his first degree (kandidaatsexamen), and in 1950 he completed his studies (doctoraal examen, comparable to a master’s degree).

Two events from Kan’s years at the University of Amsterdam turned out to have a decisive impact on some of his later choices. First of all, Kan always spoke with admiration about the lectures by Professor Johannes de Groot about “differentiation and integration.” In the spring of 1949 de Groot gave a seminar lecture about the book on topology by the Princeton mathematician Solomon Lefschetz, and he organized a small reading group at his home to work through this book. Kan joined this reading group, together with several other young Dutch mathematicians, among them the late T. A. Springer. Secondly, after his kandidaats degree, Brouwer asked Kan to become his assistant. Brouwer gave Kan a lot of freedom, and Kan spoke of this assistantship as very inspiring. In this way, both Brouwer and de Groot influenced Kan’s future career to a high degree.

In Israel

In February of 1951, equipped with letters of recommendation from de Groot and Brouwer, Kan left for Israel. After a few weeks there, he managed to obtain a job at the Weizmann Institute in a seismic oil exploration project. Kan had to do the mathematical calculations that this search required. (Oil was never found.) Kan described this work as rather monotonous and not very inspiring. After a year, Kan had to serve in the army. But the army allowed him to do his service at the Weizmann Institute itself, and he could

Clark Barwick is professor of mathematics at Massachusetts Institute of Technology. His email address is clarkbar@math.mit.edu.

Michael Hopkins is professor of mathematics at Harvard University. His email address is mjh@math.harvard.edu.

Haynes Miller is professor of mathematics at Massachusetts Institute of Technology. His email address is hrm@math.mit.edu.

Ieke Moerdijk is professor of mathematics at Radboud University Nijmegen. His email address is i.moerdijk@math.ru.nl.

For permission to reprint this article, please contact: reprint-permission@ams.org.

DOI: http://dx.doi.org/10.1090/noti1282
thus stay there for another two and a half years. His job offered him a lot of spare time, and he began to think about topology again. In the spring of 1954, Samuel Eilenberg came from Columbia University on a visit to the Hebrew University in Jerusalem. (At the time, Eilenberg was already one of the leading figures in algebraic topology, due to his work with Saunders Mac Lane and the influential *Foundations of Algebraic Topology*, which he had just written with Norman Steenrod.) Kan knocked on Eilenberg’s hotel room door, and explained his simplicial description of homotopy groups. Eilenberg asked him if he could prove the homotopy addition theorem, and Kan returned a week later with a proof. Eilenberg told Kan that he had a thesis there, engineered an ad hoc arrangement giving Kan the status of graduate student at the Hebrew University, and in the summer of 1954 Kan submitted his thesis. He formally received his PhD in 1955.

In the meantime Kan had married Nora Poliakof, the daughter of a Dutch general practitioner in Amsterdam and like Kan a survivor of Bergen-Belsen. Nora too had lost both parents during the war and immediately after had emigrated to Israel. Dan and Nora had four children: Ittai (1956), Michael (1957), Tamara (1962), and Jonathan (1965). Jonathan died in 1973 of leukemia, a heavy blow for the Kan family. Nora died in August 2007.

In the United States

After his PhD, Kan took up a postdoctoral position for a year (1955–56) with Eilenberg at Columbia University. During that year he wrote three ground-breaking papers about simplicial sets and two about adjoint functors. Subsequently, Kan went to Princeton for a year before returning to Israel. Dan and Nora had four children: Ittai (1956), Michael (1957), Tamara (1962), and Jonathan (1965). Jonathan died in 1973 of leukemia, a heavy blow for the Kan family. Nora died in August 2007.

Kan had very strong views about his role as a teacher. He had a modern view of the teaching profession, having little use for the convention of a lecture. He gave very few lecture courses at MIT and rarely spoke at conferences. Instead, he devised various alternatives. He introduced an undergraduate seminar in basic algebraic topology, in which students were given a list of definitions and theorems and were challenged to provide examples and proofs and present them in class.

In 1969 Kan instituted the “Kan Seminar,” a literature seminar devoted to classic papers in algebraic topology. The charter class included Tadatoshi Akiha (mayor of Hiroshima from 1999 to 2010), Ken Brown (now at Cornell), Dan Burns (University of Michigan), Hans Salamonsen (Aarhus), Bruce Williams (Notre Dame), and W. Stephen Wilson (Johns Hopkins). It has run every fall since then (with perhaps one exception). While the list of papers has evolved somewhat, the course has remained very close to Dan’s original conception. One of Dan’s principles was that this was not a recruiting device to attract PhD students. The seminar was held in Dan’s office, which featured a long couch and a prominent copy of C. Allan Gilbert’s *All is Vanity*. It met very early—8 a.m.—and he would hold office hours before it. A central objective was the formation of a cohort of graduate students who knew each other well and worked together. To further that goal, every fall he and Nora hosted a party at his house and invited some thirty-five Boston area mathematicians along with the seminar participants. They may not have realized it, but he thought of this as an important part of the seminar, and it stopped when he stopped leading the seminar. The Kan seminar has spawned a variety of similar seminars around the world, notably Emily Riehl’s recent “Kan extension seminar” [Emily Riehl, The Kan Extension Seminar: An experimental online graduate reading course, *Notices of the AMS* 61 (2014), 1357–1358].

WORK

Kan struck an independent course from the very start. Eilenberg had initiated the use of singular simplices in 1944, with the objective of constructing a transparently functorial homology theory, and Serre used a cubical analogue to ease his work on the homological structure of fibrations. Kan initially preferred cubical sets over simplicial sets. He realized that in fact one could define the homotopy groups of a cubical set provided one
could fill in the boundary of a cube minus one face: this was the “extension” or “Kan” condition. He was persuaded of the efficacy of simplicial objects in place of cubical objects by John Moore’s proof that a simplicial group automatically satisfied the extension condition, and starting with this third paper everything is written simplicially. Very quickly he subsumed a lot of classical homotopy theory under the simplicial tent. He constructed a model for Serre’s loop space using simplicial groups which were free on generators preserved by degeneracies. These became one of Kan’s favorite ways of thinking about a homotopy type. The Hurewicz map was simply abelianization, and a simple proof of the Hurewicz theorem emerged. For connected simplicial sets one could dispense with inverses; this is the “Dold-Kan” theorem. This line of research culminated in Kan’s demonstration (1959) that these free simplicial groups are just as efficient as CW complexes in their representation of homotopy types. This perspective contributed to the Kan-Thurston theorem (1976) asserting that any connected space is homologically equivalent to the classifying space of a discrete group.

The passage back and forth between spaces and simplicial sets had interesting formal properties, which Kan codified in the language of adjoint functors. (The name was insisted upon by Eilenberg.) This formalism has become so ingrained in mathematics that it seems incredible that it had an author. In the same paper, Kan defines limits, colimits, and what we know today as Kan extensions. (Mac Lane’s dictum “all concepts are Kan extensions” is only a mild exaggeration.)

Kan played an important early role in the development of stable homotopy theory. Spectra were first described by Lima in 1959, and by 1963 Kan had published his account of “simplicial spectra,” simple combinatorial objects behaving like simplicial sets with negative dimensional simplices. Kan’s colleague George Whitehead showed (1962) that homology theories could be represented by spectra, and the two of them collaborated on the development of the theory of simplicial spectra. They investigated the smash product of spectra and orientability with respect to a sequence of ring spectra obtained from the group spectrum model of the sphere spectrum by dividing by terms in the lower central series.

Kan’s interpretation of the Hurewicz theorem had already suggested that the lower central series would be interesting. He had given an interpretation of J. H. C. Whitehead’s “certain exact sequence” in these terms. He helped Raoul Bott’s student Edward Curtis prove a connectivity theorem for terms in the mod p lower central series, a result underlying many convergence results to this day. Soon the “Six Author Paper” (A. K. Bousfield, E. B. Curtis, D. M. Kan, D. G. Quillen, D. L. Rector, and J. W. Schlesinger, 1966) used the mod p lower central series to produce a spectral sequence coinciding stably with the Adams spectral sequence with an explicit E_1 term (described in terms of the “Lambda algebra”). Kan’s student Stewart Priddy went on to make the unstable picture explicit and to found the “Koszul duality” movement.

Also at this time Kan was serving as guide to Daniel Quillen as Quillen developed the axiomatic framework of model categories. Quillen’s book Homotopical Algebra incorporates much of Kan’s world view, and Kan adopted the framework of model categories in his later work.

From this point on much of Kan’s research was conducted in collaboration with former students. With A. K. Bousfield, he gave two other constructions of the unstable Adams spectral sequence. The second of these was based on an exhaustive study of cosimplicial spaces and the Tot construction on them and appears in the book Homotopy Limits, Completions and Localizations, which Kan always referred to as “the Yellow Monster.” This served as a textbook for a generation of topologists learning simplicial methods and provided a general foundation for the process of localization and completion explored earlier by Artin and Mazur, Sullivan, and Quillen. It made extensive use of the notion of a nilpotent space, due to Kan’s student Emmanuel Dror Farjoun, an optimal weakening of simple connectedness or simplicity. Bousfield and Kan published a series of papers filling out various aspects of this work.

In the late 1970s Kan began a long collaboration with Bill Dwyer, who had received his PhD under Kan’s direction in 1973. In 1980 they linked Quillen’s theory of model categories to another conception of what a homotopy theory is by defining a simplicial enrichment of a model category using a device they termed “hammock localization.” Over the next twenty years Dwyer and Kan explored a wide swath of homotopy theory. They (along with Kan’s student Chris Stower and others) developed a strategy for classifying topological realizations of various kinds of homotopical data and investigated the accompanying obstruction theory. They identified the “centric” condition on a diagram, a condition that is satisfied quite often and that dramatically simplifies the obstruction theory for realization. This has been fundamental in developments ranging from p-compact groups to elliptic cohomology. With Mike Hopkins and Jeff Smith, Dwyer and Kan explored the homotopy theory of cyclic sets.

Much of Kan’s effort in the late 1980s and early 2000s was focused on a reconceptualization of homotopy theory, trying to understand what a homotopy theory is rather than understanding homotopy-theoretic properties of spaces (or simplicial sets). The fruits of this effort are presented in “the Blue Beast,” Homotopy Limit Functors on Model Categories and Homotopical Categories, by Dwyer,
Applications will be accepted until the post is filled.
Salary and Fringe Benefits will be highly competitive, commensurate with qualifications and experience. The University offers a comprehensive fringe benefits package, including medical care, plus a contract-end gratuity for an appointment of two years or longer and housing benefits for eligible appointee. Further information about the University and the general terms of service for appointments is available at https://www2.per.cuhk.edu.hk. The terms mentioned herein are for reference only and are subject to revision by the University.

Application Procedure
Application forms are obtainable (a) at https://www2.per.cuhk.edu.hk or (b) in person/by mail with a stamped, self-addressed envelope from the Personnel Office, The Chinese University of Hong Kong, Shatin, Hong Kong.
Please send the completed application form and/or full curriculum vitae, together with copies of qualification documents, a publication list and/or abstracts of selected published papers, and names, addresses and fax numbers of three referees to whom the applicants’ consent has been given for their providing references (unless otherwise specified), to the Personnel Office by post or by fax to (852) 3942 0947. Please quote the reference number and mark ‘Application – Confidential’ on cover. The Personal Information Collection Statement will be provided upon request.