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2014 Fields Medalists
Welington de Melo, Bjorn Poonen, Jeremy Quastel, and Anton Zorich

The Notices solicited the following articles about the works of the four individuals to 
whom Fields Medals were awarded at the International Congress of Mathematicians 
in Seoul, South Korea, in August 2014.  This was a historic occasion, as it marked 
the first time since the medal was established in 1936 that a woman was among 
the recipients. The International Mathematical Union also issued news releases de-
scribing the medalists' work, and these appeared in the October 2014 issue of the 
Notices.
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—Allyn Jackson

L–R: Martin Hairer, Manjul Bhargava, 
South Korean president Park Geun-
hye, Maryam Mirzakhani, IMU 
president Ingrid Daubechies, 
and Artur Avila.
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Welington de Melo

The Work of Artur Avila
Artur Avila was awarded the Fields Medal in
2014 for his deep contributions to dynamical
systems and to the spectral theory of one-frequency
Schrödinger operators. Many of his profound
achievements—in one-dimensional dynamics, both
real and complex, as well as in flat billiards and in
the spectral theory of Schrödinger operators—are
characterized by an intense use of the powerful
ideas of renormalization. He has also made deep
advances in the theory of conservative dynamical
systems in any dimension and in the stable
ergodicity of partially hyperbolic systems.

Artur Avila was born in Rio de Janeiro, Brazil,
where he lived until he finished his PhD studies at
the Instituto de Matemática Pura e Aplicada (IMPA)
in 2001. Before starting his postdoc position
in the Collège de France in Paris, Artur, with
collaborators, obtained a complete description
of typical dynamics of unimodal interval maps,
i.e., smooth interval maps with a unique nonflat
critical point. It was already known that the space
of unimodal maps contains two disjoint regions
where the dynamics is well understood. For maps in
the regular region, there exists a unique attracting
fixed point, and the trajectories of almost all
initial conditions, in the Lebesgue measure sense,
are asymptotic to this periodic point. The typical
dynamical behavior is therefore periodic. For maps
in the stochastic region the dynamics is chaotic
but with a good statistical description: there exists
an absolutely continuous invariant measure that
controls the dynamics of a typical orbit in the sense
that the time average of any physical observable
is equal to the space average of the observable
with respect to this measure. In particular, the
frequency of visits of a typical orbit to any interval
is equal to the measure of this interval. In the
complement of these two regions there are maps
where the dynamics can be completely described
but there are other maps whose dynamics is
pathological. These different dynamical behaviors
were already present in the famous quadratic family
x ∈ [0,1], qµ = µx(1−x), where the parameter µ
belongs to the interval (0,4]. The set of parameter
values corresponding to regular maps is open and
dense by a difficult result proved in [18] and [20].
On the other hand, the set of parameter values
corresponding to stochastic maps has positive
Lebesgue measure, as proved in [20], and the
complement has measure zero [22] but positive
Hausdorff dimension. The main result in [5], [9]
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is that, for typical one-dimensional families of
unimodal maps, one does not see the third region;
i.e., the set of parameter values corresponding to
maps in the third region has Lebesgue measure zero.
For a typical one-parameter family of unimodal
maps we have a decomposition of the parameter
space with the same properties as the quadratic
family.

Another important result in his early career is
the unexpected rigidity in the space of unimodal
maps obtained in [10]. In this article it is shown that
there is a large set R of unimodal maps such that
any typical one-parameter family intersects R in a
set of parameters of full Lebesgue measure in the
complement of the regular parameters and any two
maps in R that are topologically conjugate are in
fact smoothly conjugate. In particular, the authors
provide a combinatorial formula to calculate the
multipliers of all periodic points for maps in R.

More recently, in complex one-dimension dy-
namics, Avila and Lyubich described several
fundamental properties on the geometry of the
Julia set of Feigenbaum-type quadratic polynomials
[6], [7], [2], [3], [4]. In particular, the existence of
examples of such quadratic polynomials with Julia
sets of positive Lebesgue measure is proven.

In most of these results, Avila uses as a
fundamental tool the renormalization theory. This
theory started with experimental discovery by the
physicists Feigenbaum and Coullet-Tresser in the
1970s on the transition from simple to chaotic
dynamics in families of unimodal maps. They
formulated a conjecture that involves a nonlinear
operator in the space of unimodal maps. The
proof of the conjecture and some generalizations
involve the work of several mathematicians such
as Sullivan, McMullen, and Lyubich. Finally, Avila
and Lyubich in [16] gave a very conceptual and
much simpler proof of the general conjecture that
holds also in the space of unimodal maps with
higher criticality.

A second area of dynamical systems where
Avila made fundamental contributions is the
dynamics of interval exchange transformations,
regular polygonal billiards, and ergodic properties
of the geodesic Teichmüller flow in the moduli
space of Abelian differentials on Riemann surfaces.

Given a partition I1, . . . , In of the interval [0,1] in
d ≥ 2 intervals and a permutation σ of {1, . . . , d},
we can define the mapping T : [0,1]→ [0,1] by

T(x) = x−
∑
j<i
λj +

∑
σ(j)<σ(i)

λj

if x ∈ Ii , where λj is the length of the interval
Ij . This is what is called an interval exchange
transformation, and it is completely characterized
by the permutationσ and by the vector (λ1, . . . , λd)
that belongs to a simplex in Rd+. The space of
such maps is therefore finite dimensional. We say
that a subset is typical if the complement has
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zero Lebesgue measure. Veech proved that for
any irreducible permutation the typical interval
exchange transformation is uniquely ergodic. In
1980 Katok proved that no interval exchange
transformation is mixing. Recall that a measure-
preserving transformation f : (X, µ) → (X, µ) is
mixing if

limn→∞[µ(f−n(A)∩ B− µ(A)µ(B)] = 0

for any measurable sets A and B, and it is weak
mixing if

limN→∞
1
N

N∑
n=0

[µ(f−n(A)∩ B− µ(A)µ(B)] = 0.

The joint work of Avila and Forni [11] solved the
main problem in the ergodic theory of interval ex-
change transformation: a typical interval exchange
transformation is weakly mixing for any irreducible
permutation that is not a rotation. This work is
connected to a recent result of Avila and Delecroix
proving that almost all regular polygonal billiards
are weakly mixing. Again, one of the main tools
for these results is a renormalization operator
that consists of considering the first return map
to a smaller interval and rescaling to the original
size. It is called the Rauzy-Veech renormalization
operator. Veech and Masur proved that it has an
absolutely continuous invariant measure, and the
ergodic properties of the operator give important
information about the ergodic properties of a typi-
cal interval exchange transformation. The invariant
measure is not finite, but in [25] Zorich defined an
accelerated version of the renormalization opera-
tor, called the Rauzy-Veech-Zorich operator, that
does have a finite absolutely continuous invariant
measure. The new operator maps each interval
exchange transformation into an iterate of the
previous operator, the iterate depending on the
interval exchange transformation. The dynamics of
this new operator is closely related to the so-called
Teichmüller geodesic flow that acts in the moduli
space of Abelian differentials in compact Riemann
surfaces of a given genus. Zorich experimentally
discovered the existence of d exponents that for
a typical interval exchange transformation with
d intervals describes the deviation of the ergodic
average from the mean and found that these
exponents are given by the Lyapunov spectrum of
the so-called Rauzy-Veech-Zorich cocycle over the
renormalization operator. In [12] Avila and Viana
proved the Kontsevich-Zorich conjecture stating
that the Lyapunov spectrum of the Rauzy-Veech-
Zorich cocycle is simple. Another important result
in this area was obtained by Avila and collaborators
establishing the exponential decay of correlation
of the Teichmüller flow on strata of the moduli
space of Abelian differentials that was conjectured
by Veech.

The area of one-frequency Schrödinger operators
was very active before the arrival of Avila. In

particular, it was known that if one multiplies an
analytic potential by a coupling constant generating
a one-parameter family of operators, then for very
small values of the coupling constant the spectrum
of the operator is absolutely continuous, and
for very large values the spectrum is pure point
for typical values of the frequency. Not much
was known for values of the coupling constant
in between. However, it was known that to an
operator corresponds a one-parameter family of
SL(2,R) cocycles, parametrized by the energy, and
it was known that the spectrum coincides with the
bifurcation set of the dynamical object. These are
the values of the parameter such that the cocycle
is not uniformly hyperbolic. Probably inspired by
the results in one-dimensional dynamics, Avila
described three regions in this space of cocycles: UR
(uniform hyperbolic), SpC (supercritical), and SbC
(subcritical) and called the complement of these
C (critical). The cocycles in SpC are not uniformly
hyperbolic but have positive Lyapunov exponents
and were already well understood. The part of the
spectrum of the operator that lies in this region
corresponds typically to the pure point spectrum.
Avila proved that the part of the spectrum that lies
in SbC corresponds to the absolutely continuous
part of the spectral measure. Finally, he proved
the existence of a stratification of the space into
submanifolds of positive codimension and that
the set of critical cocycles is a small subset, in the
measure-theoretic sense, of these submanifolds
[23]. As a consequence, Avila proved that a typical
one-parameter family of cocycles does not contain
critical cocycles at all. Also as a consequence of
Avila’s construction, the spectrum of an operator
corresponding to a typical potential, in a measure
theoretical-sense (prevalence), decomposes into a
finite number of disjoint open sets, and the spectral
measure is absolutely continuous or pure point
on a given open set if and only if the Lyapunov
exponent is zero or positive in this region. This
result justifies the intuition from physics that
typically one is either in the conductor regime
(absolutely continuous spectrum) or the insulator
regime (pure point spectrum).

An intensely studied family of Schrödinger
operators is the family of almost Mathieu operators,
which is related to a celebrated physical phenomena,
the quantum Hall effect. This family is not typical
in the above sense because it has a critical cocycle
where the coupling constant is equal to one. This is
forced by a symmetry, the Aubry duality. Before the
arrival of Avila in this area, much was known about
this family. For example, for almost all frequencies
and phases the spectrum is absolutely continuous
in the subcritical region (coupling constant smaller
than one) and pure point in the supercritical
region. Also, the spectrum has positive Lebesgue
measure in both regions. Still, some important
questions remained open. Avila solved all the
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remaining questions about the spectral measure
of the almost Mathieu system: the spectrum is
a Cantor set for critical values of the coupling
constant for all irrational frequencies [14]; it has
zero Lebesgue measure [24]; and for all irrational
frequencies and almost all phases, the spectrum
is continuous singular. To summarize, one can
now say with Avila that the spectral measure is
absolutely continuous precisely in the subcritical
case and pure point precisely in the supercritical
case.

In another area of dynamical systems, Avila
proved that a C1 volume-preserving diffeomor-
phism of a compact manifold can be approximated
in the C1 topology by a C∞ volume-preserving
diffeomorphism [1]. This was an open question
for more than thirty years, and Avila’s proof in-
volves solving a partial differential equation with
low regularity. The result is very relevant for the
description of generic properties of conservative
dynamical systems, because another fundamental
tool, the closing lemma, is known only in the C1

topology, and for good distortion estimates one
needs higher regularity.
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Bjorn Poonen

The Work of Manjul Bhargava
Anyone solving equations over Z or Q soon
recognizes the need to study the arithmetic of
higher number fields and algebraic varieties. Manjul
Bhargava has found new and improved ways
to count many such objects by understanding
the orbits of G(Z) on V(Z) := Zn for various
representations of algebraic groups G → GL(V)
over Z. This has led to dramatic consequences
in arithmetic geometry concerning the average
behavior of elliptic curves and higher-genus curves
over Q.

Counting Number Fields

Consider the problem of estimating the number
of isomorphism classes of degree n number
fields k whose absolute discriminant Dk satisfies
|Dk| ≤ X asX →∞. The primitive element theorem
guarantees that each suchk is obtained by adjoining
a root of a degree n irreducible polynomial over Q.
But there are many polynomials giving rise to each
number field, and eliminating the redundancy is
tricky.
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One can attempt to solve this and other arith-
metic counting problems by following the outline
below:

(1) Identify a representation G → GL(V) and lo-
cal conditions (inequalities and congruence
conditions) such that the nondegenerate
G(Z)-orbits in V(Z) satisfying the local con-
ditions parametrize the objects of interest.

(2) Count the orbits satisfying the inequalities by
counting lattice points inside a fundamental
domain (a region in V(R) consisting of one
representative of each G(Z)-orbit).

(3) Sieve out the orbits that violate the congru-
ence conditions.

Davenport and Heilbronn [19] successfully carried
out this three-step approach to count degree 3
number fields of bounded discriminant (and they
were preceded by Gauss, who studied the average
behavior of class numbers of quadratic fields,
possibly by a similar method). As will be explained,
Bhargava has contributed significant ideas improv-
ing all three steps, enabling him to carry out this
approach in much more complicated situations.

Consider Step 1. Davenport and Heilbronn used
a bijection taking certain GL2(Z)-orbits in the space
Sym3Z2 of degree 3 homogeneous forms over Z
to degree 3 number fields. For n ≥ 4, however,
the representation SymnZ2 of GL2 does not yield a
similar parametrization of degree n number fields.
Instead, one studies prehomogeneous vector spaces,
vector spaces V equipped with an algebraic group
action for which geometrically there is a Zariski
dense orbit. (The Zariski dense orbit condition is
natural in hindsight, since any two degreen number
fields become isomorphic when tensored with C.)
Prehomogeneous vector spaces were classified
in [27]. Wright and Yukie carried out a detailed
study of their arithmetic over fields in [32]. In
particular, they identified prehomogeneous spaces
whose orbits over Q gave rise to number fields of
degrees 4 and 5, but they did not realize their goal
of using these to count the fields.

Bhargava has gone through the list of pre-
homogeneous vector spaces to discover what
their nondegenerate integral orbits correspond
to, often with unexpected answers. For instance,
whereas Wright and Yukie found a surjection
taking nondegenerate GL2(Q)× GL3(Q)-orbits in
Q2 ⊗ Sym3Q2 to degree 4 number fields, Bhargava
discovered that nondegenerate GL2(Z) × GL3(Z)-
orbits in Z2 ⊗ Sym3Z2 correspond to commutative
rings of rank 4 over Z equipped with a cubic resol-
vent ring (a notion he invented). There seems to
be no recipe for predicting what extra arithmetic
structure is rendered visible by considering inte-
gral orbits, but Bhargava has heuristics that have
guided him to an answer in each case.

The extra structure can be a nuisance or a
boon. It is a nuisance when counting degree 4

fields, for instance, because each field contains
many orders (subrings that are free over Z of
the same rank as the field), and each order
can have many cubic resolvent rings. But it is
a boon if the extra structure itself is worth
counting; for instance, one of the prehomogeneous
spaces enabled Bhargava [2, Theorem 5] to prove
the first nontrivial case of the Cohen-Martinet
generalization [18] of the Cohen–Lenstra heuristics
on the distribution of class groups.

In Step 2, heuristically the number of lattice
points inside a fundamental domain F should be
approximately the volume. If F has narrowing
tentacles stretching to infinity, however, this
heuristic can be hard to justify or even false!
Bhargava’s brilliant solution was to average the
counts over several fundamental domains (in fact,
to integrate over a continuum of fundamental
domains) [2], [4]. This effectively fattens the
tentacles so that the volume heuristic can be
justified farther out along the tentacle, out to the
point beyond which the number of relevant lattice
points is provably negligible.

Step 3 is necessary to sieve out unwanted objects.
For instance, each number field k has a unique
maximal orderOk, but the methods in Steps 1 and 2
lead more naturally to a count of all orders, so one
must sieve out for each prime p the orders that fail
to be maximal at p. Ekedahl [22] proved a general
sieve result: for instance, given relatively prime
f , g ∈ Z[x1, . . . , xn], he computed the density of
what remains of Zn after sieving out for each p the
~a ∈ Zn satisfying f (~a) ≡ g(~a) ≡ 0 (mod p). But
Bhargava’s applications require sieving out also
~a satisfying congruences of the form h(~a) ≡ 0
(mod p2) for a certain polynomial h, and the
existing results for the general problem of this
kind rely on the abc conjecture [23], [24]. Bhargava
circumvented this for theharising in his application
in a counterintuitive way: he mapped his problem
to an Ekedahl-style counting problem in a higher-
dimensional space. See [6] for the state of the art
on this idea.

Ultimately, all these ideas enabled Bhargava
to prove that for each n ≤ 5, the number of
isomorphism classes of degree n number fields k
satisfying |Dk| ≤ X is asymptotic to cnX as X →∞
for an explicit constant cn [2], [4]. He was also led
to formulate a precise conjecture for higher n.

Elliptic Curves

If E is an elliptic curve y2 = x3+Ax+B overQ, the
set E(Q) of rational points forms an abelian group
that is finitely generated. The torsion subgroup
of E(Q) is well understood, but the rank as a
function of (A, B) is so complicated that it is not
even known whether it is computable in theory.
Essentially the only known way to bound the
rank is to observe that for any n ≥ 2, the quotient
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E(Q)/nE(Q) injects into a finite computable group
SelnE the n-Selmer group.

Birch and Swinnerton-Dyer showed that elliptic
curves E equipped with a nonzero element of Sel2E
are in bijection with nondegenerateQ××PGL2(Q)-
orbits in Sym4Q2 and proved that each orbit
has an (almost) integral representative [15]. This
representation is not a prehomogeneous space,
but at least it is coregular, meaning that its
ring of polynomial invariants is isomorphic to a
polynomial ring. Using knowledge of the invariants,
Bhargava and Shankar [10] succeeded in adapting
the three-step approach to prove that the average
size of Sel2E as E varies is 3 and hence the average
rank of E(Q) is bounded! (See [25] for a summary
of their proof.) Although de Jong [20] had proved
analogous results over function fields by a similar
approach of counting integral orbits and although
Brumer [17] had proved that conjectures about
elliptic curve L-functions would imply that the
average rank over Q was bounded, Bhargava and
Shankar were the first to prove unconditionally
that the average rank overQ was bounded and also
the first to obtain a precise value for the average
of a Selmer group size over a global field.

In subsequent work, Bhargava and Shankar
counted integral orbits in more complicated rep-
resentations to show that for each n ≤ 5, the
average of #SelnE equals the sum of the divisors
of n. They proved also that the average remains
unchanged if finitely many congruence conditions
are imposed upon A and B. This, combined with a
theorem of Dokchitser and Dokchitser [21] relat-
ing Selmer groups to root numbers and Wong’s
method [31, §9] for constructing a positive-density
family of elliptic curves in which the root num-
ber is equidistributed, implies that the average
rank of E(Q) is at most 0.885 [12, Theorem 3].
(Conjecturally the average is 1/2.)

Recent advances in the arithmetic of elliptic
curves allow results on Selmer groups of an elliptic
curve over Q to be transferred to results about the
rank and analytic rank (the order of vanishing at
s = 1 of theL-function ofE). Specifically, in addition
to the Dokchitsers’ work mentioned above, there
is work on the Iwasawa main conjecture for GL2

by Skinner and Urban [28] and by Wan [29]; work
connecting p-adic L-functions to Heegner point
heights by Bertolini, Darmon, and Prasanna [1] and
by Brooks [16]; and work generalizing the Gross-
Zagier formula by Yuan, Zhang, and Zhang [33].
Combining all of this with the work of Bhargava
and Shankar, we now know that

• a positive fraction of elliptic curves over Q
have rank 0 and analytic rank 0 [11] and

• a positive fraction of elliptic curves over Q
have rank 1 and analytic rank 1 [13].

In particular, the Birch and Swinnerton-Dyer con-
jecture (that rank equals analytic rank) holds for a

positive fraction of elliptic curves over Q—in fact,
more than 66 percent of them [14].

Higher-Genus Curves

Bhargava and Gross [7], using work of Wang [30],
also found a coregular representation whose
rational orbits parametrize 2-Selmer elements
of Jacobians of hyperelliptic curves y2 = f (x),
where f is a polynomial of degree 2g + 1 over Q
for some fixed g. They used this to prove that
the average size of the 2-Selmer group of such
Jacobians is 3, generalizing the result for elliptic
curves. Combining this with Chabauty’s p-adic
method, they could prove that many odd degree
hyperelliptic curves have few rational points. Later,
Stoll and the present author [26] were able to
combine the Bhargava-Gross results with new
ideas on the 2-adic geometry of curves to show
that as g →∞, the fraction of these curves having
no rational points at all (other than the one at
infinity) tends to 1.

Bhargava also found a representation providing
information on even degree hyperelliptic curves,
enabling him to show that for all g ≥ 0, a positive
fraction of curves y2 = f (x) with deg f = 2g + 2
has no rational points (he showed that their 2-
coverings fail to have local points) and the fraction
tends to 1 as g → ∞ [5]. Later, with Gross and
Wang he showed that a positive fraction of these
curves also has no points over any number field
of odd degree despite having points over every
completion of Q [8].

Combining the results for odd and even degrees,
we now know that most equations of the form
y2 = f (x) have no rational solutions.

Final Words

There are many other beautiful works of Bhargava
we did not have space to discuss, such as a
vast generalization [3] of Mahler’s theorem on
series expansions for p-adic continuous functions
and a preprint with Hanke [9] on Conway’s “290-
conjecture” that a positive-definite quadratic form
over Z represents all nonnegative integers if and
only if it represents all nonnegative integers up to
290. But it is the counting techniques that have had
the greatest impact. Bhargava’s ideas will surely
exert a strong influence on the future development
of the subject.
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Jeremy Quastel

The Work of Martin Hairer
Martin Hairer of the University of Warwick was
awarded a Fields Medal at the 2014 ICM in Seoul
for his outstanding contributions to the theory
of stochastic partial differential equations (SPDE).
His most spectacular achievement has been his
single-handed creation of the theory of regularity
structures, which is a flexible analytic tool for giving
sense to many ill-posed SPDEs. This breakthrough
has opened up the entire field. Hairer is an Austrian
who was raised in a mathematical family in Geneva,
where he obtained a PhD in physics under Jean-
Pierre Eckmann. But those who understand his
work know that he is a mathematician in the
best sense of the word: a quick study, patient,
genial, and well rounded. His work ranges over
many aspects of physically motivated problems
in (stochastic) analysis. Here I will concentrate on
explaining a few of his works in SPDE. First, some
background.

Markov Processes
Markov processes are used widely in the sciences
to model dynamical processes whose evolution is
in some way random. They are defined through
transition probabilities p(t, x,A) representing the
probability for the state Xt+s at future time t + s
to be in a set A, given that at the present time s,
Xs = x. If we had explicit transition probabilities
and an initial measure µ0 in hand, we could in
principle compute everything. However, they are
usually presented to us only implicitly, the state
evolving according to some sort of stochastic
equation. Even in the case of stochastic ordinary
differential equations, Xt ∈ Rd , t > 0,

(1) Ẋt = b(Xt)+ σ(Xt)ξt ,
where in the natural simplest cases ξt is Gaussian
white noise, it is not obvious how to make sense
of the equation. White noise means that averages
of ξt over nice disjoint sets are uncorrelated, or,
in other words, Bt =

∫ t
0 ξsds is Brownian motion.

One of the first things one learns is that with
probability 1 it is nowhere differentiable; in fact, it
just fails to be Hölder 1/2. From the equation, we
expect the same of Xt . A classical fact is that the
Riemann-Stieltjes integral

∫
FdG is ill defined if the

Hölder exponents of F and G sum to less than 1.
Hence one cannot give unambiguous meaning for
typical realizations of the noise to the stochastic
integral which is the last term in the integrated
version of (1),

(2) Xt = x+
∫ t

0
b(Xs)ds +

∫ t
0
σ(Xs)dBs .

Jeremy Quastel is professor of mathematics at the Uni-
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However, the difference between various approx-
imations turns out to have a probabilistically
well-defined limit, and therefore the ambiguity
can be understood as a modelling issue. This was
worked out by Itô and others, the key concept
being martingales. A downside is lack of continuity:
If ξεt are smooth approximations to the white
noise,

∫ t
0 σ(Xεs )ξεsds may not even converge to∫ t

0 σ(Xs)ξsds. A modern point of view [8] due to
Terry Lyons clarifies the approximation issue by
noting that once one has made a choice of the
simplest ambiguous quantity Bt :=

∫ t
0 BsdBs , the

rest is ordained. In particular, the solution map
Bt , Xt factors into a probabilistic step in which
one enhances the Brownian motion Bt with an
admissible choice of Bt , together with an explicit,
deterministic, continuous map from the resulting
rough path (Bt ,Bt) to the solution Xt .

Another important question about Markov pro-
cesses concerns long time behavior. A nice situation
is when the process is ergodic—there exists a
unique invariant measure—and after a long time
basically finds itself in the temporally stationary
process started with the invariant measure.

In the finite-dimensional setting of (1), these
problems can be studied through the operators

(3) L = 1
2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
+

d∑
i=1

bi(x)
∂
∂xi

where a = σσ∗. The transition probabilities are
the kernels of the semigroup etL and invariant
measure solutions ofL∗µ = 0. If the variance matrix
a is degenerate, the uniqueness follows from the
Hörmander hypoellipticity theorem, probabilistic
proofs of which can be obtained using the stochastic
calculus of variations a.k.a. Malliavin calculus.

SPDE
However, many physically motivated problems are
presented to us as stochastic partial differential
equations, in particular, several equations for
processes which arise as canonical representatives
of huge fluctuation universality classes. Despite
several decades of work, methods which could deal
with these important examples proved elusive, and
a general theory was not expected. Now d in (3)
is replaced by a continuum Rd , and there exists
no useful infinite-dimensional PDE theory to help
us. Many of these equations are far more ill-posed
than (1), where we were just marginally below
the regularity at which things would have made
classical sense. These singular SPDEs are relations
between nonlinear functions of various derivatives
of nowhere differentiable functions which are not
even close to making classical sense. They seemed
to contain some magical hidden meaning which
could not be made precise.
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Ergodicity of Navier-Stokes
An SPDE problem where the long time behavior is
of obvious interest (e.g. in turbulence) is that of a
randomly forced fluid. We have the incompressible
Navier-Stokes equations which ask for a divergence-
free vector field evolving according to

(4)
∂u
∂t
+ (u · ∇)u+∇P = ν∆u+ F.

P is the pressure, and F is the external force. We
assume F is acting in just a few long wavelength
modes (i.e. someone is stirring it). Physically, the
injected energy cascades down to smaller scales in
the inertial range until it gets to a smallest scale,
at which it is dissipated by the viscosity ν, which
should be thought of as small. A natural question
then is whether there is a unique invariant measure
supported in this inertial range. One works in
two dimensions (in d = 3 simply making sense
of the unforced equation for more than a short
time is already a millennium problem). Since the
forcing is in only a few modes, the problem is
highly hypoelliptic and becomes that of obtaining
results that compare favorably to the Hörmander
condition, but now in infinite dimensions. A key
difficulty is lack of natural reference measures—
it is just too easy to be singular in infinite
dimensions—and a subsequent lack of good norms
for the dynamics. The problem attracted the
interest of several groups in the early 2000s [7],
[17], [3]; with the finite-dimensional forcing it
was finally solved by Hairer and Mattingly [10]
with a condition allowing a forcing on only two
Fourier modes for any ν > 0! An asymptotic Feller
property is introduced which is sensitive to the
regularization of the transition densities due to
both probabilistic and dynamic mechanisms, and
this in turn is verified through the nondegeneracy
of the Malliavin covariance matrix. Naturally there
are extremely interesting and important questions,
such as the distribution of energy in these invariant
measures, for which there are physical predictions
which await mathematically rigorous work.

The KPZ Revolutions
In the mid-1980s, Kardar, Parisi and Zhang
introduced the equation

(5) ∂th = λ(∂xh)2 + ∂2
xh+ ξ

to describe a randomly growing interface in d = 2,
such as the boundary of a bacterial colony or
a slowly burning front, idealized to be a height
function h(t, x), t > 0, x ∈ R. The right-hand side
identifies the three key mechanisms of relaxation
(∂2
xh), uncorrelated random forcing (space-time

white noise ξ), and, most important, the nonlinear
slope dependent drift or lateral growth (∂xh)2.

If the asymmetry λ is set to 0, the equation
becomes linear (in the noise) and readily integrated,
yielding a continuous function-valued Markov

process which has Brownian motion as invariant
measure. A smooth initial function evolves for
t > 0 to a locally Brownian version and in the long
time limit after centering, to Brownian motion.

Amazingly, the nonlinear dynamics also pre-
serves Brownian motion (modulo an absolute
height shift), but the fluctuations are otherwise
non-Gaussian and of nonstandard superdiffusive
size t1/3 (compared to t1/4 when λ = 0). At the
physical level, this goes back to highly nonrigor-
ous renormalization group computations on the
stochastic Burgers equation satisfied by u = ∂xh.

In a breakthrough that surprised both the
mathematics and physics communities, Johannson
[15] (and [1] for a related model) succeeded
in computing the free energy fluctuations of
geometric last passage percolation and showing
that normalized by t1/3 they converge to the Tracy-
Widom law, which had arisen ten years earlier in
the seemingly unrelated field of random matrices.
These free energies satisfy discrete versions of the
KPZ equation, and at the physical level one expects
all such one-dimensional systems displaying the
three basic mechanisms to have the same large time
asymptotics, refined into asymptotic fluctuation
classes depending only on initial data. This is the
strong KPZ universality conjecture, and the poorly
understood universal large time limit is known
as the KPZ fixed point. There has been significant
progress over the last fifteen years through the
work of Spohn, Sasamoto, Tracy, Widom, le Doussal,
Dotsenko, Borodin, Corwin, O’Connell, Seppäläinen,
Ferrari, and others on a small number of exactly
solvable models, including to some extent the
KPZ equation itself, where a few exact one-point
distributions have been computed. However, at
this level KPZ is just one model within the huge
universality class. The connection with random
matrices and the origin of the exact solvability
and its link to representation theory have been
considerably clarified by the work of Borodin
and coauthors, especially under the umbrella of
Macdonald Processes [2].

However, the KPZ equation is also itself universal
in the sense that it is expected to be the unique
heteroclinic orbit connecting (by varying time t or
equivalently λ) the Gaussian fixed point to the KPZ
fixed point and consequently the universal fixed
point of models with weakly tuned asymmetry or
noise. This is the weak KPZ universality conjecture.
In contrast to the strong conjecture, where at
the present time we can rely only on fortuitous
exact computations coupled with asymptotics, the
weak conjecture is open to a general attack by
mathematical analysis.

To attempt it, one needs an analytic theory of
KPZ. But if h(t, x) in (5) is locally Brownian in
x, what could the nonlinear term (∂xh)2 possibly
mean? Of course, the problem of finding ways to
multiply genuine Schwartz distributions is an old
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one, and various idiosyncratic techniques existed,
but here one has to find the definition imposed by
the physics. It was far from clear how to accomplish
this, and earlier attempts turned out not to be
physical [4].

Actually, for the KPZ equation, there is a cheap
way out. At a completely formal level,

(6) Z(t, x) = exph(t, x)

satisfies

(7) ∂tZ = ∂2
xZ + ξZ.

Due to the roughness of ξ, there is really an
infinite absolute height shift. But we are just
looking at fluctuations, so a huge change of
reference frame doesn’t matter. The multiplicative
stochastic heat equation (7) was one of the few
truly infinite-dimensional nonlinear SPDEs which
could be handled by the Itô techniques. The
resulting h := logZ is known as the Hopf-Cole
solution of KPZ, and it is now known to have the
expected physical behavior arise in the weakly
asymmetric/weak noise limits and is what the
exact computations refer to, the remarkable fact
being that the correlations, i.e. the noise averages
E[Z(t, x1) · · ·Z(t, xn)], satisfy closed Bethe ansatz
solvable delta-Bose gas equations.

This suggests that one way to prove the weak
universality conjecture would be to show that the
appropriate partition functions converge to (7).
This was done first by Bertini and Giacomin for
a model called asymmetric simple exclusion and
then later for a few others. But only very special
models can be handled in this manner; one is faced
again with the problem that the Itô theory is not
well set up for approximations, and it just begs
the question of finding a more robust theory for
nonlinear SPDE.

Regularity Structures
A natural approach to make sense of a singular
SPDE is through regularization. For example, we
could take smooth approximations ξε to our noise
ξ. If we can somehow find a limit of the resulting
solutions as the regularization is removed that
doesn’t depend on the way we regularize, we can
say it is the solution. But typically the solution
map lacks continuity in the necessary topology,
and convergence is false. However, it may converge
after renormalization by some probabilistically
well-defined but now divergent quantity. For KPZ
(5), Hairer proved (so far only on the torus T)
that there is a diverging Cε such that the solution
hε(t, x) of

(8) ∂thε = λ[(∂xhε)2 − Cε]+ ∂2
xhε + ξε

converges to the Hopf-Cole solution, in probability,
locally uniformly as continuous functions. If the
regularization of the noise were just in space,
this could be done using the Hopf-Cole + Itô

approach, but the key point is that the new method
is general and robust. To give just one example, if
the regularization of the noise is on a scale ε in
space and ε2 in time, the weak KPZ universality
suggests that the classical solution to

(9) ∂t ĥε = ε(∂xĥε)4 − C′ε + ∂2
x ĥε + ξε

should converge to the Hopf-Cole solution of
(5) with a highly nontrivial λ, the exponent 4
miraculously becoming a 2 in the limit. Hairer’s
method can be adapted to prove such things
(see [13] for a review) as well as providing a
good approximation theory for equations like (7)
[14]. The interested reader is invited to write the
equation for Ẑ = log ĥ and try to understand why
on Earth it would converge to (7).

Motivated by rough paths, the idea is to factor
the solution map into a deterministic part and
a probabilistic part. The deterministic part is
provided by an abstract solution map which acts
on an abstract version of the equation together
with a lift of the noise. The probabilistic part,
which has some degrees of freedom, is how you
lift the noise to the abstract framework.

The main new tool to construct the abstract
solution map is the notion of regularity structures.
This is a vector space tailor-made for the equation,
with sufficient information to provide a local
description of the solution at each point at various
levels of regularity. It contains polynomials in the
time and space variables, like a classical Taylor
expansion. But our solution is going to be built out
of various functionals of the noise which are too
rough to represent using only these. So it should
also contain symbols representing the input noise
and enough rules for multiplication and versions
of the heat operator and differentiation so that we
can represent our equation there. One also needs
a group of transformations from the description
at one point to another point, and it is here that a
highly nontrivial algebraic structure arises. Next
one builds a space of functions D taking values
in the regularity structure that generalizes the
classical Hölder spaces and on which there are
analogues of the Schauder estimates for the heat
operator. These allow one to obtain the solution
there as a fixed point.

Finally, a reconstruction operator pastes to-
gether the expansions at different points so that
the abstract solution is realized as a genuine
Schwartz distribution, which (one hopes!) is the
solution to the original equation.

It is indeed the solution for the naïve lift
of the regularized noise. But as we remove the
regularization, things do not converge. Fortunately,
a renormalization group acts on the space of
lifts of the noise/multiplication rules, and by a
careful choice one can find a sequence which
does converge as one removes the regularization.
These renormalizations are realized as concrete
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renormalizations of the equations satisfied by the
reconstruction; in the case of KPZ we get (8), and
the Hopf-Cole limit can be thought of as at best
satisfying

(10) ∂th = λ[(∂xh)2 −∞]+ ∂2
xh+ ξ .

In this way, the problem is reduced to finding
the correct renormalization, usually by educated
guesswork, and then proving convergence of
the corresponding finite collection of multilinear
transformations of the noise.

If the smooth approximating noises are Gaussian,
we are in a situation of Wiener chaoses, and there
are well-known criteria for convergence based on
L2 norms. While these are completely explicit,
they are generally complicated convolutions of
singular kernels, and convergence depends on a
careful counting of singularities in integrals over
a resulting graph. This is highly reminiscent of
earlier calculations in quantum field theory, and
Feynman-like diagrams are used to keep track of
the cumbersome computations.

Dynamic Φ4
3

The Φ4
d model is supposed to be the Gibbs prob-

ability measure on Schwartz distributions Φ on
Rd , or the torus Td or some subset, where the
probability of Φ is proportional to e−βH(Φ) where

H(Φ) = ∫ [|∇Φ|2 + C
2 |Φ|2 − λ

4Φ4
]
. It is a universal

model for phase coexistence in near-critical phe-
nomena, closely related to SPDE and similarly
ill-posed in d ≥ 2, since the regularity of the Gauss-
ian field obtained by setting λ = 0 is insufficient to
define

∫ Φ4. So we take some regularization and try
to find a nontrivial (i.e. non-Gaussian) limit as it is
removed, perhaps after some renormalization. The
problem was well studied, the main result being
that it is only nontrivial in d ≤ 3. An outstanding
issue was whether the limits resulting from dif-
ferent regularizations in the difficult d = 3 case
were really the same. Similar to the SPDE problems,
what was missing was an intrinsic characterization
of the limit.

It was suggested that by analogy with the Ising
model, where information about the static model
had been obtained from the Glauber dynamics,
one might approach this through a study of the
stochastic dynamics (“stochastic quantization”)
with Φ4

3 as invariant measure:

(11) ∂tΦ = ∆Φ + λΦ3 − CΦ + ξ .
It is expected to be a universal model for such
dynamical models near criticality in a limit similar
to the weak limits for KPZ.

But (11) just opened a new can of worms; for
twenty years nobody could even make sense of it
in d = 3 until Hairer constructed the appropriate
regularity structure, in which the solution exists
as an abstract model to which lifts of appropriate

renormalized solutions of regularized versions of

(11) converge.

Since Hairer’s first well-posedness results, sev-

eral proofs have appeared for KPZ [9] and dynamicΦ4
3 [16], [5]. However these appear to be far more

closely tied to the particular regularization as well

as the specifics of the equation. One of the key

points of the regularity structures is that they do

give an intrinsic characterization of solutions for

a large class of equations like (5) or (11) as the

solution in the appropriate D with the lift of the

rough noise. The condition is that the equation

should be subcritical, meaning that as you zoom in,

the nonlinearity vanishes. In addition, regularity

structures provide a precise description of the

solution, level by level of (ir)regularity.
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Anton Zorich

The Work of Maryam Mirzakhani
On August 13, 2014 (the opening day of ICM at
Seoul), Maryam Mirzakhani received the Fields
Medal “for her outstanding contributions to the
dynamics and geometry of Riemann surfaces
and their moduli spaces,” becoming the first
woman to win the Fields Medal. We outline several
directions of Mirzakhani’s research, which ranges
from geometry of hyperbolic surfaces to dynamics
in moduli spaces passing through applications
of symplectic topology to algebraic geometry of
moduli spaces. More scientific details can be
found in the presentation of C. McMullen for the
ICM [McM] and in a very accessible article [W] of
A. Wright. For a more personal biographical note
we recommend the paper of E. Klarreich [Kl].

Moduli Spaces

We are used to the fact that geometric objects might
form continuous families with a rich topology. For
example, the family of all straight lines in the
plane passing through the origin forms a circle;
the family of all complex lines passing through the
origin of the vector space Cn+1 forms the complex
projective space CPn.

One can consider continuous families of certain
geometric structures on a fixed manifold. For exam-
ple, the family of all possible complex structures
on a smooth compact surface S of genus g forms
the moduli spaceMg of complex dimension 3g−3.
By the uniformization theorem complex structures
on a smooth surface are in natural bijection with
hyperbolic metrics of constant curvature, so the
moduli spaceMg can also be seen as the family of
nonsingular metrics of a fixed negative curvature
on the surface S.

During the last several decades various moduli
spaces became very common in mathematics and
theoretical physics. When working on extremely
naive objects, such as graphs or interval exchange
transformations, one might run into questions
related to moduli spaces.

Theoretical physics continually develops its
opinion on the nature of the relevant space which
we inhabit. Strings give way to d-branes, and
moduli spaces of Riemann surfaces give way to
moduli spaces of Calabi–Yau manifolds.

While the geometry of the world most of us
inhabit is not yet clear, what is clear is that
Maryam Mirzakhani has spent many years in the
worlds of hyperbolic and flat surfaces.

Anton Zorich is a professor at the Institut de mathéma-
tiques de Jussieu–Paris Rive Gauche and a member of
the Institut Universitaire de France. His email address is
anton.zorich@imj-prg.fr.

The Hyperbolic World
Weil-Petersson Volumes

Consider a smooth surface S of genus g with
n holes (where n = 0 is not excluded). A closed
curve α on S is called simple if it does not have
self-intersections. Speaking about simple closed
curves on a surface S we always tacitly assume
that they are not contractible either to a point or
to one of the boundary components (if there are
any).

Suppose now that the surface S is endowed with
a metric of constant curvature −1. By convention,
we always assume that the boundary components
of the resulting hyperbolic surface X are realized
by geodesics βi in the hyperbolic metric, where
i = 1, . . . , n. The hyperbolic lengths of the geodesic
boundary components βi are denoted by bi(X) or
by Li(X) = |βi|X . By convention, the zero value
Li = bi = 0 corresponds to a cusp of the hyperbolic
metric.

Fixing the hyperbolic lengths bi of all boundary
components and varying the hyperbolic metric,
we get a continuous family of hyperbolic metrics
on S. The real (6g − 6 + 2n)-dimensional space
of all such metrics is called the moduli space
Mg,n(b1, . . . , bn) of bordered hyperbolic surfaces.
By the work of W. Goldman and S. Wolpert it
carries a natural closed 2-form ωWP called the
Weil-Petersson symplectic form.

The wedge power ωn of a symplectic form
on a manifold M2n defines a volume form. The
volume of the moduli spaceMg,n(b1, . . . , bn) with

respect to the volume form ω3g−3+n
WP is called

the Weil-Petersson volume of the moduli space
Mg,n(b1, . . . , bn). To give an account of Mirza-
khani’s work on Weil-Petersson volumes, we start
with the mysterious identity of G. McShane.

Theorem (McShane). Let f (x) = (1+ ex)−1 and let
X be a hyperbolic torus with a cusp. Then∑

γ
f (`γ(X)) =

1
2
,

where the sum is taken over all simple closed
geodesics γ on X, and `γ(X) is the length of the
geodesic γ.

This identity is in some sense a miracle: though
the length spectrum of simple closed geodesics
is different for different hyperbolic tori with a
cusp, the sum above is identically 1/2 for any
X ∈M1,1(0). Ten years after the work of McShane,
Mirzakhani discovered a remarkable generalization
of McShane’s identity to hyperbolic surfaces of any
genus with any number of boundary components.

Let us discuss why such identities are relevant
to the Weil-Petersson volumes of the moduli
spaces. Integrating the right-hand side of McShane’s
identity over the moduli spaceM1,1(0)with respect
to the Weil-Petersson form, one obviously gets
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1
2 VolM1,1(0). What is not tautology is that the
integral of the sum on the left-hand side admits a
geometric interpretation as the integral of f over
the natural cover M∗

1,1(0) of the initial moduli
spaceM1,1(0). This cover is already much simpler
than the original moduli space: it admits global
coordinates in which the integral of f can be easily
computed.

Mirzakhani’s more general identity does not
immediately yield the volume. However, cutting
the initial surface by simple closed geodesics
involved in her identity and developing the idea
of averaging over all possible hyperbolic surfaces,
Mirzakhani gets a recursive relation for the volume
Vg,n(L1, . . . , Ln) := VolMg,n(L) in terms of analo-
gous volumes of simpler moduli spaces. These
relations allow Mirzakhani to prove the following
statement and to compute the volumes explicitly.

Theorem ([M2]). The volume Vg,n(L1, . . . , Ln) is a
polynomial in L2

1, . . . , L2
n; namely, we have

(12) Vg,n(L) =
∑

|α|≤3g−3+n
Cα · L2α ,

where Cα > 0 lies in π6g−6+2n−2|α| ·Q.

Simple recursive formulae for volumes in genera
0,1,2 were found earlier by P. Zograf. Very precise
asymptotics of volumes for large genera were re-
cently proved by M. Mirzakhani and P. Zograf [MZg]
(up to a multiplicative constant conjecturally equal
to 1√

π which still resists a rigorous evaluation).

Counting Simple Closed Geodesics

Consider a hyperbolic surface X of finite area. In
this section there are no boundary components,
but we still allow the hyperbolic metric of constant
curvature −1 to have cusps. We denote the corre-
sponding moduli space byMg,n. It is known that
the growth rate of the number of closed geodesics
of length at most L on any such surface X has the
rate eL/L when the bound L grows.

It is not surprising that most long closed
geodesics have self-intersections. A quantitative
estimate of “most” is much more subtle: M. Rees
and I. Rivin showed that the number sX(L) of
simple closed geodesics of length at most L grows
polynomially in L.

In counting geodesics, one can count separately
those simple closed geodesics which separate X
into two connected components and those which
do not. More generally, two simple closed curves on
a topological surface S have the same topological
type if one curve can be transformed to another by
a homeomorphism of S. For any surface of a fixed
genus g with a fixed number n of punctures the
number of different topological types of simple
closed curves is finite. M. Mirzakhani counted
simple closed hyperbolic geodesics type by type.

Theorem ([M3]). For any hyperbolic surface
X ∈Mg,n the number sX(L, type) of simple closed
geodesics on X of length at most L and of a fixed
topological type has exact polynomial asymptotics:

lim
L→+∞

sX(L, type)
Ld

= c(type) · VolBTh
1 (X) ,

where d = 6g − 6+ 2n = dimRMg,n.

For geometers we add that the quantity
VolBTh

1 (X) is the normalized volume of the “unit
ball” in the space of measured laminations MLg,n
where the “unit ball” is defined in terms of the
hyperbolic metric on X and its volume is computed
in terms of the Thurston measure onMLg,n.

Note that the asymptotic proportion of simple
closed geodesics of fixed type is the same for all
hyperbolic surfaces X inMg,n:

lim
L→+∞

sX(L, type1)
sX(L, type2)

= c(type1)
c(type2)

.

For example, Mirzakhani shows that nonseparating
simple closed geodesics on any hyperbolic surface
of genus two are six times more frequent than the
separating ones.

The proof of the theorem combines methods
from two domains. On the one hand, technology
elaborated by Mirzakhani in [M2] allows one
to compute averages over Mg,n of all kinds of
counting functions of simple closed geodesics
(and not only Weil-Petersson volumes). To prove
asymptotic formulae for individual hyperbolic
surfaces, Mirzakhani elegantly relates the counting
problems to the Thurston measure on the space
of measured laminations MLg,n and deduces the
desired results from the ergodicity of the action of
the mapping class group onMLg,n with respect to
the Thurston measure, a result proved by H. Masur.

The Symplectic World
Witten’s Conjecture

Complex projective space CPn mentioned in the
introduction carries the natural tautological line
bundle: its fiber over a “point” [L] ∈ CPn is the
line L considered as a vector space. Any complex
line bundle ξ over a compact manifold M can
be induced from the tautological bundle by an
appropriate map fξ : M → CPn (for a sufficiently
large n depending on M). The second cohomology
of the complex projective space H2(CPn;Z) ' Z
has a distinguished generator c1. The induced
element f∗ξ c1 ∈ H2(M ;Z) is called the first Chern
class of the line bundle ξ.

There is a natural bijective correspondence
between hyperbolic metrics of constant negative
curvature with n cusps and complex structures
endowed with n distinct marked points x1, . . . , xn
on a closed smooth surface of genus g. In this
section we use this latter interpretation of the
moduli spaceMg,n.
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Consider the (co)tangent space L(C, xi) to the
Riemann surface C at the marked point xi . Varying
(C, x1, . . . , xn) inMg,n we get a family of complex
lines L(C, xi) parameterized by the points ofMg,n.
This family forms a line bundle Li over the moduli
spaceMg,n. This tautological line bundleLi extends
to the natural Deligne-Mumford compactification
Mg,n of the initial moduli space. The space Mg,n
is a nice compact complex orbifold, so for any
i = 1, . . . , n one can define the first Chern class
ψi := c1(Li). Recall that cohomology has a ring
structure, so taking a product of k cohomology
classes of dimension 2 (as the first Chern class) we
can integrate the resulting cohomology class over a
compact complex manifold of complex dimension
k. In particular, for any partition d1 + · · · + dn =
3g − 3 + n of dimCMg,n = 3g − 3 + n into the
sum of nonnegative integers, one can integrate
the product ψd1

1 . . .ψ
dn
n over the orbifold Mg,n.

By convention, the intersection number (or the
“correlator” in a physical context) is defined as

(13) 〈τd1 . . . τdn〉g :=
∫
Mg,n

ψd1
1 . . .ψ

dn
n .

As always, when there are plenty of rational
numbers indexed by partitions or such, it is
useful to wrap them into a single generating
function. The resulting generating function is
really famous. For physicists it is a partition
function in two-dimensional quantum gravity. In
mathematical terms, E. Witten conjectured in 1991
a certain recursive formula for the numbers (13)
and interpreted this recursion in the form of KdV
differential equations satisfied by the generating
function. The conjecture caused an explosion of
interest in the mathematical community: a single
formula interlaced quantum gravity, algebraic
geometry, enumerative geometry, combinatorics,
topology, and integrable systems.

The first proof of Witten’s conjecture is due
to M. Kontsevich, who used metric ribbon graphs
as a “combinatorial model” of the moduli space
to express the intersection numbers (13) as a
sum over 3-valent ribbon graphs. Maryam Mirza-
khani suggested in [M1] an alternative proof. She
ingeniously applied techniques of symplectic ge-
ometry to moduli spaces of bordered Riemann
surfaces Mg,n(L1, . . . , Ln) discussed in the previ-
ous section. Namely, Mirzakhani recognized the
intersection numbers (13) in the coefficients Cα
from formula (12) for the Weil-Petersson volumes
Vg,n(L) (up to a routine normalization factor).
This allowed Mirzakhani to reduce the recurrence
relations for the intersection numbers contained
in Witten’s formula to recurrence relations for the
volumes Vg,n(L) discussed above and thus prove
Witten’s conjecture. (Yet other proofs are due to
A. Okounkov and R. Pandharipande, who used the
Gromov-Witten theory of P1 and to M. Kazarian
and S. Lando, who used the ELSV-formula.)

~v1

~v2

~v3

~v4

~v4

~v3

~v2

~v1

C

Π

Figure 1.

The Flat World
Families of Translation Surfaces

To construct a flat metric on a surface of genus
different from one, we have to allow isolated
conical singularities. We consider only those flat
metrics which mimic a flat metric on a torus:
namely, parallel transport of any tangent vector
along any closed curve avoiding singularities is
required to bring the vector to itself. A surface
endowed with this kind of flat metric is called a
translation surface. Since parallel transport along
a small loop around any conical singularity brings
the vector to itself, the cone angle at any singularity
on a translation surface is an integer multiple of
2π .

Similar to what one finds in the case of the
torus, all translation surfaces can be obtained by
the following construction. Consider a collection
of vectors ~v1, . . . , ~vn in R2 and arrange these
vectors into a broken line. Construct another
broken line starting at the same point as the
first one, arranging the same vectors in the order
~vπ(1), . . . , ~vπ(n), where π is some permutation of
n elements. By construction the two broken lines
share the same endpoints; suppose that they bound
a polygon as in Figure 1. Identifying the pairs
of sides corresponding to the same vectors ~vj ,
j = 1, . . . , n, by parallel translations, we obtain a
closed topological surface.

It is convenient to consider the vertical direction
as part of the structure. Under this convention,
the structure of a translation surface is equivalent
to the structure of a pair (Riemann surface C,
holomorphic 1-form ω on it). As a complex
coordinate on C one can use the coordinate z in
the complex plane C where the polygon Π lives,
the holomorphic 1-form ω is the form dz in these
coordinates, ω has zeroes exactly at the conical
singularities, and the order of zero at a singularity
with the cone angle 2π(di + 1) is di .

The polygon in our construction depends con-
tinuously on the vectors ~vi . This means that the
topology of the resulting translation surface (its
genus g, the number and the types of the resulting
conical singularities) do not change under small
deformations of the vectors ~vi . Fixing a collec-
tion of cone angles 2π(d1 + 1), . . . ,2π(dm + 1)
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with integer di for i = 1, . . . , n, we get a family
H (d1, . . . , dm) of translation surfaces. The vectors
~v1, . . . , ~vn can be viewed as complex coordinates
in this family, called period coordinates. These
coordinates define an orbifold structure and a
natural volume element on everyH (d1, . . . , dm).

Readers preferring algebro-geometric language
may view any such family as a stratum in the
moduli space Hg of pairs (Riemann surface C,
holomorphic 1-form ω on C), where the stratum
is specified by the degrees d1, . . . , dm of the zeroes
of ω.

Each stratum admits a natural action of the group
GL(2,R). A linear transformation g ∈ GL(2,R) of
the ambient R2 ' C maps the polygon Π to a
polygon gΠ. Identifying pairs of parallel sides of
gΠ by translations, we get a translation surface
g · S.

The subgroup SL(2,R) ⊂ GL(2,R) preserves the
flat area. This implies that the action of SL(2,R)
preserves the real hypersurface H1(d1, . . . , dm)
of translation surfaces of unit area. The latter
codimension one subspace can be compared to the
unit sphere (or rather to the unit hyperboloid) in
the ambient stratumH (d1, . . . , dm). The action of
the group SL(2,R) preserves the naturally induced
volume element on our “unit hyperboloid.” The flow
induced by the action of the diagonal subgroup is
called the Teichmüller geodesic flow.

Theorem (H. Masur, W. A. Veech). For any
(d1, . . . , dm), the stratum H1(d1, . . . , dm) has
finite volume. The Teichmüller geodesic flow is
ergodic on every connected component of every
stratum.

Here “ergodic” means that any measurable
subset invariant under the action of the group
has necessarily measure zero or full measure. The
ergodic theorem says that in such situations the
orbit of almost every point homogeneously fills
the ambient connected component. Namely, for
almost all starting data the “time” average of
an integrable function f over the corresponding
trajectory coincides with the “space” average, that
is, with the integral of f over the ambient connected
component ofH1(d1, . . . , dm).

We state the ergodic theorem for almost all
starting data, because even for extremely nice and
smooth maps (like a map homogeneously winding

Figure 2.

a circle twice around itself) certain rare trajectories
behave highly nonhomogeneously, accumulating
on some peculiar (often fractal) sets. Though these
atypical starting data have measure zero, the
multitude of types of the corresponding atypical
trajectories is enormous. For example, for the
map of the circle mentioned above and for almost
any real number d between 0 and 1, one can
find a trajectory whose closure has Hausdorff
dimension d.

The Magic Wand

Dynamical systems for which all possible orbit
closures and all possible ergodic measures are
described by a short list of possible simple cases are
very rare. An extremely important class of examples
comes from very special dynamical systems on
homogeneous spaces. The fundamental theorem of
M. Ratner describing possible measures and orbit
closures has had fantastic applications to number
theory developed by S. G. Dani, G. Margulis, and
others. The theorem below shows that though the
moduli space is not a homogeneous space, it is
almost one.

Theorem ([EM], [EMM]). The closure L of any
GL(2,R)-orbit in any stratum H (d1, . . . , dm) is a
complex orbifold given locally by linear equations
in period coordinates.

Every SL(2,R)-orbit closure supports a unique
ergodic SL(2,R)-invariant probability measure,
and any ergodic SL(2,R)-invariant measure is
supported on a suborbifold.

As vague conjectures (or better, very optimistic
dreams), these properties were discussed for a long
time without the slightest hint of a general proof.
The only exception is the case of surfaces of genus
two, for which ten years ago C. McMullen completely
classified all possible orbit closures. Applying clever
geometric construction, he managed to reduce the
problem to genus one, where Ratner’s theorem
becomes applicable.

The proof of A. Eskin, M. Mirzakhani, and
A. Mohammadi is a titanic work which took
many years. It absorbed numerous fundamental
developments in dynamical systems which mostly
do not have any direct relation to moduli spaces.
To mention only a few, it incorporates certain
ideas of the low entropy method of M. Einsiedler,
A. Katok, E. Lindenstrauss; results of G. Forni and
of M. Kontsevich on the Lyapunov exponents of
the Teichmüller geodesic flow; the ideas from the
work of Y. Benoit and J.-F. Quint on stationary
measures; iterative improvement of the properties
of the invariant measure inspired by the approach
of G. Margulis and G. Tomanov to the actions of
unipotent flows on homogeneous spaces; some fine
ergodic results due to Y. Guivarch and A. Raugi.

In some situations the theorem really serves as
a Magic Wand. Consider, for example, the windtree
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model introduced by physicists P. and T. Ehrenfest
more than a century ago. We study the billiard
in the plane filled periodically with the identical
rectangular obstacles as in Figure 2. A trajectory
might go far away, then return relatively close back
to the starting point, then make other long trips.
The diffusion rate ν describes the average rate T ν
with which the trajectory expands in the plane on
a long range of time T � 1. More formally,

ν := lim
T→∞

log(diameter of trajectory of length T)
logT

.

For the random walk in the plane or for a billiard
with periodic circular obstacles, the diffusion rate
is known to be 1/2: the most distant point of a
piece of trajectory corresponding to segment of
time [0, T ] would be located roughly at a distance√
T . It was recently discovered in [DHL] that for

the windtree model as in Figure 2 the diffusion
rate is 2/3.

Suppose now that we want to find the diffusion
rate for a generalized windtree model with periodic
scatterers of the shape of a more complicated
rational polygon. Replace the periodic billiard with
an associated compact flat surface. Touch it with
the Magic Wand of Eskin-Mirzakhani-Mohammadi
and find its SL(2,R)-orbit closure in the space of
flat surfaces. Run the geodesic flow to compute the
mean monodromy (Lyapunov exponents) of the
appropriate block of the complex Hodge bundle,
and we get the answer.

To be honest, in full generality, this strategy is
a new dream (though in some situations it already
works; see [DZ]). We do not yet have a classification
of SL(2,R)-invariant orbifolds except in genus two.
This presents a new challenge, which might be
full of mysteries and marvels, as indicated by
recent results of M. Mirzakhani and A. Wright,
who have found a GL(2,R)-invariant suborbifold
of completely enigmatic origin in the familyH (6).

A billiard in a polygon is just an elegant way
to describe a certain class of dynamical systems;
the same kind of dynamical systems appear in
solid-state physics, in conductivity theory, in the
theory of surface foliations, and the Magic Wand is
extremely useful for the related problems in these
areas (see [Zor] for details on applications of the
Magic Wand). It also opens a new way to study
moduli spaces.
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