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This new book by Frank A. Farris, professor of
mathematics at Santa Clara University, is a com-
prehensive introduction to the mathematics of
symmetry. Symmetry has long provided a connec-
tion between mathematics and the visual arts. This
book distinguishes itself from other treatments
of the subject (e.g., [9], [5], and [1]) by its detailed
descriptions of exactly how one creates new artistic
designs. It doesn’t just analyze existing patterns
but provides mathematical formulas that allow
you to create your own designs, exhibiting a wide
variety of different types of symmetries, including
not only wallpaper patterns (patterns with two
independent plane translational symmetries) but
several other designs as well. It is filled with many
beautiful images. The publisher also deserves com-
mendation for printing the book on photo-quality
glossy paper, with high-resolution color images,
and at a modest price. Farris writes in a style
that invites the reader to participate in the artistic
process. In fact, I was so intrigued by his approach
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that I tried my hand at creating my own designs,
some of which are shown in this review. I believe
many readers will also become involved in this
way.

The book provides a unified development of
fundamental ideas from group theory, Fourier
series, complex variables, linear algebra, and
geometry. It shows how all of these ideas can be
brought to bear in understanding and creating
symmetric planar designs. It is most suitable
for one of three audiences: (1) undergraduate
mathematics majors studying it as a “capstone”
experience or an Independent Study. This audience
might benefit from having an actively involved
instructor to guide their study, someone to help
them over typographical errors and one incorrect
mathematical argument that I will describe later.
(2) Mathematics professors looking for ideas to
supplement one or more of their courses in any
of the fields mentioned above or who are looking
for ideas for undergraduate research projects.
(3) People who the author refers to as “brave
mathematical adventurers,” who are studying this
material on their own.

Rather than try to summarize all of the manifold
topics dealt with in the book, I will concentrate
on three topics that are representative of the
overall content. These topics are (1) color maps
of complex functions, (2) creating rosette images,
and (3) creating symmetric wallpaper patterns.

Color Maps of Complex Functions
At the very end of the twentieth century, Farris [3]
played a principal role in developing the use of
color maps to sketch graphs of functions, f : C→ C.
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The idea is to use a color wheel, a well-known tool
in the visual arts. An example of a color wheel is
shown at the top left of Figure 1. This color wheel
is used to mark locations in the complex plane.
For each value of w , the value of C(w) is a unique
color (at least in principle). For example, on the
top left of Figure 1, the values of w that are near i
are colored greenish-yellow, while values near −1
have a light blue tint. As values approach zero they
turn black, and beyond a certain radius they are
all colored white. By composing a function f (z)
with C, we get a function C(f (z)) that gives a color
portrait of f (z). For instance, on the top right of
Figure 1, a color map for w = z2 is shown. Notice
how the colors near w = 0 cycle twice through
the rainbow as we move once around w = 0. The
connection to winding numbers is thereby made
visually evident. Also, contour lines meet at right
angles away from w = 0, just as they do for w = z.
This illustrates conformality of w = z2 away from
the origin.

The preceding color plots were created by me.
The ones created by Farris are similar—although he
marks points near zero as white and exceedingly
large values as black—and are shown in his book
and at the webpage [3]. There is software now
that produces color plots with great ease. At the
bottom of Figure 1, we show a color plot of the
function w = 3(z+1)(z− i)2(z−1+ i)3. This plot
was produced with the free SageMath system [6],
[7]. I needed just two commands:

3*(z+1)*(z-i)ˆ2*(z-1+i)ˆ3
complex_plot(f, (-2, 2), (-2, 2))

The plot that SageMath produced clearly marks the
location of the zeros at −1, i, and 1− i and their
multiplicities of 1, 2, and 3, respectively. All of that
information is encoded in the number of times
the colors of the rainbow are cycled through in
the neighborhood of each zero. There are several
nice examples of color plots at the website [2],
including plots of branching in Riemann surfaces.

Creating Rosette Images
The first truly artistic images in the book occur
when Farris creates rosette images. Instead of
using a color wheel for the color map C, Farris
decides to use “The World as my Color Wheel.” In
other words, he uses for the color map C any of
a series of color photographs that he has taken
over the years. I will now outline his method for
creating the rosette image shown on the left of
Figure 2.

Farris uses the following basic fact (Theorem 4,
p. 42):

If, in the [convergent] sum

f (z) =
∑
anmznzm,

we have anm = 0 unless n ≡m (mod p),
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Figure 1. Top left: Color plot for w = zw = zw = z, a basic
color map C. Both horizontal and vertical axes
span the interval [−2,2][−2,2][−2,2]. Top right: Color plot
for w = z2w = z2w = z2. Bottom: SageMath color plot for
w = 3(z + 1)(z − i)2(z − 1+ i)3w = 3(z + 1)(z − i)2(z − 1+ i)3w = 3(z + 1)(z − i)2(z − 1+ i)3. Created by the
reviewer.

then f is invariant under rotation through
an angle of 2π/p. In other words, f is a
rosette function with p-fold symmetry.

Here we see rotational symmetry of these functions
f corresponding to number-theoretic symmetry
for their coefficients. Of course, Zp is isomorphic
to the rotational group about the origin of C
generated by e2πi/p, as Farris points out. Farris
then shows that additional symmetries can be
created by invoking further symmetries on the
coefficients anm. For example, for the functions
f (z) =

∑
anmznzm to have mirror symmetry σx

about the x-axis, Farris symmetrizes using group
averaging based on the symmetry group generated
byσx. The group average function

(
f (z)+f (σxz)

)
/2

is guaranteed to have the required mirror symmetry.
The power series for f then leads to the following
requirement—or “recipe,” as Farris calls it—that
the coefficients for f should satisfy anm = amn
(since they do so for the symmetrized group
average function). He has then prepared the way
for stating what function f he used to create the
rosette image shown in Figure 2. It is a function
having the form

f (z)=z5z0+z0z5+a(z6z1+z1z6)+b(z4z−6+z−6z4)

for any complex constants a and b. Farris does
not tell us the specific values of a and b he
chose, as his aim (quite rightly) is to teach us
how to create our own designs, not reproduce
his. By construction, such a function f (z) will be
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Figure 2. Left: Rosette image with 555-fold
rotational and mirror symmetries. Right: Photo
of rhododendron used to define its color map.
(From p. 45, used by permission of Princeton

University Press.)

invariant under 5-fold rotations about the origin
and have mirror symmetry about the x-axis. The
color mapped display, C(f (z)), then inherits all
symmetries enjoyed by f (z). Farris is careful to
point out that group operations then force both
f (z) and its display C(f (z)) to have many more
symmetries than the ones singled out in the initial
design. He discusses how the symmetry group
for the rosette is the dihedral group D5, and
he contrasts that group with the cyclic group
C5, isomorphic to the integer powers of ei2π/5,
which is a normal subgroup of D5. As we can
see by comparing the color map image of the
rhododendron with the rosette image, none of the
symmetry of the rosette comes from the color map;
it all comes from the construction of symmetry
enjoyed by the function f . For reasons of space, I
will not show any more of the color map images C,
only the designs C ◦ f .

I found the rosette display that Farris has
created to be just gorgeous! The method outlined
above is typical of his approach throughout
the book, introducing mathematical ideas from
complex analysis, Fourier analysis, group theory,
and geometry in the concrete setting of creating
visually stunning symmetric designs.

Creating Wallpaper Patterns
As lovely as the rosette figures are, they are
just a prelude to the topic he devotes the most
space to: creating color images with wallpaper
symmetries. The methods he used for rosettes
are now deepened and extended to handle these
designs, which have infinite symmetry groups.
As an example of his techniques, I shall outline
his method for constructing functions possessing
4-fold rotational symmetry about the origin along
with translational symmetries of period 1 along
the x and y axes (square lattice symmetry), while

also including additional symmetries if desired.
After that, I will show some additional examples
of designs for other wallpaper groups that he
discusses.

To create functions with square lattice symmetry
and 4-fold rotational symmetry, Farris proceeds
as follows. First, he uses as a basis the set of
complex exponentials {En,m(z) = e2πi(nx+my)} for
all n and m in Z and z = x + iy ∈ C. Any finite
(or convergent) sum

∑
an,mEn,m(z) is guaranteed

to have the required translational symmetry. To
obtain the rotational symmetry, he again employs
group averaging. In this case, the group comprises
the rotations generated by ω4 = e2πi/4. The group
average Wn,m of En,m is defined by Wn,m(z) =
1
4

∑3
k=0 En,m(ω

k
4z). Farris refers to all of these

group averages, {Wn,m(z)}, as wave packets. Any
finite, or convergent, linear combination f (z) =∑
an,mWn,m(z) is guaranteed to have both square

lattice symmetry and 4-fold rotational symmetry
about the origin. By choosing various coefficients
an,m and composing with various color maps C,
we obtain an infinite variety of designs, all with the
same symmetry group. Farris uses the notation of
crystallography to refer to this symmetry group; it
is p4. I like the fact that he uses crystallographic
notation. Although it has weaknesses, which Farris
points out, it makes his book more accessible to a
wider audience.

To add additional symmetry, as with the rosette
construction, we enforce symmetries on the coef-
ficients an,m corresponding to the symmetry we
desire for the functions f . For example, to obtain
mirror symmetry about the line y = x we require
that the coefficients satisfy an,m = am,n. In Figure 3,
I show an image I constructed using this recipe.
Notice that there are additional symmetries in this
image other than the ones intentionally created,
such as mirror symmetries about the x and y axes.
Farris is careful to show that these symmetries all
arise from the group properties of the symmetry
group, p4m, for this design. He also provides
a helpful fundamental cell diagram that gives a
concise geometric picture of all the symmetries of
the design. He does this for each of the symmetry
groups he discusses.

I cannot adequately convey the joy I felt when
this image popped onto my computer after about
a week of preparation of the computer code [8]. All
of the mathematics actually works and creates, in
my opinion, a lovely image. This is praise for Farris;
I was only following his detailed descriptions of
what to do. I strongly encourage you to get his
book and try his methods for yourself.

By way of comparison with the image I created,
I show in Figure 4 a design by Farris that exhibits 4-
fold symmetry as well as glide reflection symmetry
along the line y = x− 1/2. This image was created
by a different recipe involving the coefficients an,m.
What’s the recipe? Well, I encourage you to read
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Figure 3. Design with p4m symmetry. Created by
the reviewer.

Figure 4. 4-fold rotational symmetry with glide
reflection symmetry, type p4g. (From p. 101,
used by permission of Princeton University
Press.)

the book to find out. Farris is again careful to
point out that the symmetry group operations
create multiple glide reflection axes in addition
to y = x − 1/2. These glide reflection axes are
not hard to spot, as they pass through barbell
shaped figures within the image. Farris says that
“undulating changes in direction and the mixture
of mirror rigidity with free waviness make p4g one
of my favorite pattern types.” This made sense
to me, as it explains why the image appeared to
vibrate when I looked for the location of the unit
cell.

For another example that seems to vibrate,
Figure 5 shows an image I created with 6-fold

rotational symmetry and mirror symmetry, a p6m
design. By similar methods to those outlined
above for 4-fold symmetry, Farris creates designs
with either 3-fold or 6-fold rotational symmetry.
An interesting feature of the 6-fold case is that
there will be centers of 3-fold rotational symmetry
within unit cells. For example, in Figure 5 we
can see these centers by locating points where
three propeller-like arms extend outwards in a
3-fold symmetric pattern. This phenomenon is
even clearer in the p6m design created by Farris,
shown in Figure 6. Farris points out these 3-fold
rotational centers and gives a concise explanation,
via group operations again, for their existence in
the 6-fold rotationally symmetric design. Another
symmetry that is forced upon the design is the
horizontal glide reflection axis that one can see
below the row of flower-like hexagons in Figure 5
and between the rows of carrot-colored hexagon
objects in Figure 6. As Farris demonstrates, there
are multiple glide reflection axes in addition to the
horizontal one.

I have highlighted here just a few of the many
intriguing mathematical topics Farris covers in his
book. For more details, go through the link to the
book’s website at [4].

A Near Masterpiece
While the book is a near masterpiece, it does
have quite a lot of typos. These pesky errors
could lead readers to question the book’s validity,
which would be a shame, because the book is
mathematically sound. There is unfortunately
one exception to this soundness: The proof of
convergence of Fourier series for continuously
differentiable periodic functions is incorrect. It
is correctable, but probably not by students.
Fortunately, this material is in an optional section
and is not used in the rest of the book. Farris told
me he plans to post errata on his website [4].

The book neither includes nor provides links to
computer code. Some readers might consider this
a weakness. I do not. I agree with Farris

Figure 5. A design with p6m symmetry. Created
by the reviewer.
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Figure 6. A design with p6m symmetry. Created
by Farris. (From p. 79, used by permission of

Princeton University Press.)

that there are ample resources (software such
as SageMath, Maple, Mathematica, or Matlab and
programming languages such as C++) and help for
image graphing on the Internet. Farris explains
carefully what to do with this software, i.e., the
mathematics needed. In the not-too-distant future
it is unlikely that any of those computer programs
will exist in anything like their present form. But
the mathematics described in this book surely will
remain vital for centuries to come.

This book thoroughly engaged me with its appli-
cation of fundamental and important mathematics
to produce striking artistic designs. It is a major
contribution that aids in our understanding of
symmetry, art, and how mathematics unifies them.
I recommend it most highly.

References
[1] J. H. Conway, H. Burgeil, and C. Goodman-Strauss,

The Symmetries of Things, A K Peters, Wellesley, MA,
2008.

[2] L. Crone, webpage on complex variable color plots:
w.american.edu/cas/mathstat/lcrone/
ComplexPlot.html

[3] F. Farris, webpage on complex variable color plots:
www.maa.org/visualizing-complex-valued-
functions-in-the-plane

[4] F. Farris, personal webpage: math.scu.edu/
~ffarris/homepage.html

[5] B. Grünbaum and G. C. Shepard, Patterns and Tilings,
W. H. Freeman and Co., New York, 1987.

[6] SageMath webpage: www.sagemath.org/.
[7] SageMath documentation on complex_plot proce-

dure: doc.sagemath.org/html/en/reference/
plotting/sage/plot/complex_plot.html.

[8] J. S. Walker, Pseudocode for wallpaper design:
people.uwec.edu/walkerjs/Documents/WP4PCode.
pdf.

[9] H. Weyl, Symmetry, Princeton University Press,
Princeton, NJ, 1952.

1354 Notices of the AMS Volume 62, Number 11

http://MathJobs.Org
http://MathJobs.Org
http://MathJobs.Org
http://w.american.edu/cas/mathstat/lcrone/ComplexPlot.html
http://w.american.edu/cas/mathstat/lcrone/ComplexPlot.html
http://www.maa.org/visualizing-complex-valued-functions-in-the-plane
http://www.maa.org/visualizing-complex-valued-functions-in-the-plane
http://math.scu.edu/~ffarris/homepage.html
http://math.scu.edu/~ffarris/homepage.html
http://www.sagemath.org/
http://doc.sagemath.org/html/en/reference/plotting/sage/plot/complex_plot.html
http://doc.sagemath.org/html/en/reference/plotting/sage/plot/complex_plot.html
http://people.uwec.edu/walkerjs/Documents/WP4PCode.pdf
http://people.uwec.edu/walkerjs/Documents/WP4PCode.pdf

