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This article is a tribute to one of the most prominent Pol-
ish mathematicians, Józef Marcinkiewicz, who perished
eighty years ago in the Katyń massacre. He was one of
nearly 22,000 Polish officers interned by the Red Army
in September 1939 and executed in April–May 1940 in
the Katyń forest near Smolensk and at several locations
elsewhere. One of these places was Kharkov (Ukraine),
where more than 3,800 Polish prisoners of war from
the Starobelsk camp were executed. One of them was
Marcinkiewicz; the plaque with his name (see Figure 1)
is on the Memorial Wall at the Polish War Cemetery
in Kharkov.1 This industrial execution was authorized by
Stalin’s secret order dated 5 March 1940 and organized by
Beria, who headed the People’s Commissariat for Internal
Affairs (the interior ministry of the Soviet Union) known
as NKVD.

Turning to the personality and mathematical achieve-
ments of Marcinkiewicz, it is appropriate to cite the article
[24] of his supervisor Antoni Zygmund (it is published in
the Collected Papers [13] of Marcinkiewicz; see p. 1):
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Considering what he did during his short life and
what hemight have done in normal circumstances
one may view his early death as a great blow to
Polish Mathematics, and probably its heaviest in-
dividual loss during the second world war.

From the Marcinkiewicz Biography [9]
On the occasion of the centenary of Marcinkiewicz’s birth,
a conference was held on 28 June–2 July 2010 in Poznań.
In its proceedings, L. Maligranda published the detailed
article [9] about Marcinkiewicz’s life and mathematical re-
sults; sixteen pages of this paper are devoted to his biog-
raphy, where one finds the following about his education
and scientific career.
Education. Klemens Marcinkiewicz, Józef ’s father, was a
farmer well-to-do enough to afford private lessons for him
at home (the reason was Józef ’s poor health) before send-
ing him to elementary school and then to gymnasium in
Białystok. After graduating in 1930, Józef enrolled in the
Department of Mathematics and Natural Science of the
Stefan Batory University (USB) in Wilno (then in Poland,
now Vilnius in Lithuania).

From the beginning of his university studies, Józef de-
monstrated exceptional mathematical talent that attracted
the attention of his professors, in particular, of A. Zyg-
mund. Being just a second-year student, Marcinkiewicz
attended his lectures on orthogonal series, requiring some
erudition, in particular, knowledge of the Lebesgue in-
tegral; this was the point where their collaboration be-
gan. The first paper of Marcinkiewicz (see [13, p. 35])
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Figure 1. Plaque for Marcinkiewicz on the Memorial Wall at
the Polish War Cemetery in Kharkov.

was published when he was still an undergraduate student.
It provides a half-page proof of Kolmogorov’s theorem
(1924) guaranteeing the convergence almost everywhere
for partial sums of lacunary Fourier series. Marcinkiewicz
completed his MSc and PhD theses (both supervised by
Zygmund) in 1933 and 1935, respectively; to obtain his
PhD degree he also passed a rather stiff examination.
The second dissertation was the fourth of his almost five
dozen publications; it concerns interpolation by means
of trigonometric polynomials and contains interesting re-
sults (see [24, p. 17] for a discussion), but a long publica-
tion history awaited this work. Part of it was published in
the StudiaMathematica the next year after the thesis defense
(these two papers in French are reproduced in [13, pp. 171–
185 and 186–199]). The full, original text in Polish ap-
peared in the Wiadomości Matematyczne (the Mathemati-
cal News) in 1939. Finally, its English translation was in-
cluded in [13, pp. 45–70].
Scientific career. During the two years between defending
his MSc and PhD theses, Marcinkiewicz did the one year of
mandatory military service and then was Zygmund’s assis-
tant at USB. The academic year 1935–1936 Marcinkiewicz
spent as an assistant at the Jan Kazimierz University in
Lwów. Despite twelve hours of teaching weekly, he was
an active participant in mathematical discussions at the fa-
mous Scottish Café (see [3, ch. 10], where this unique form
of doing mathematics is described), and his contribution

to the Scottish Book compiled in this café was substantial,
taking into account that his stay in Lwów lasted only nine
months. One finds the history of this book in [14, ch. I],
whereas problems and their solutions, where applicable,
are presented in ch. II. Marcinkiewicz posed his own prob-
lem; it concerns the uniqueness of the solution for the in-
tegral equation

∫
1

0
𝑦(𝑡)𝑓(𝑥 − 𝑡) d𝑡 = 0, 𝑥 ∈ [0, 1].

He conjectured that if 𝑓(0) ≠ 0 and 𝑓 is continuous, then
this equation has only the trivial solution 𝑦 ≡ 0 (see prob-
lem no. 124 in [14, pp. 211 and 212]). He also solved three
problems; his negative answers to problems 83 and 106
posed by H. Auerbach and S. Banach, respectively, involve
ingenious counterexamples. His positive solution of prob-
lem 131 (it was formulated by Zygmund in a lecture given
in Lwów in the early 1930s) was published in 1938; see
[13, pp. 413–417].

During the next two academic years, Marcinkiewicz was
a senior assistant at USB and after completing his habili-
tation in June 1937 became the youngest docent at USB.
The same year, he was awarded the Józef Piłsudski Scien-
tific Prize (the highest Polish distinction for achievements
in science at that time). His last academic year 1938–1939,
Marcinkiewicz was on leave from USB; a scholarship from
the Polish Fund for National Culture afforded him op-
portunity to travel. He spent October 1938–March 1939
in Paris and moved to the University College London for
April–August 1939, also visiting Cambridge and Oxford.

This period was very successful for Marcinkiewicz; he
published several brief notes in the Comptes rendus de
l’Académie des Sciences Paris. One of these, namely [12],
became widely cited because the celebrated theorem con-
cerning interpolation of operators was announced in it.
Now this theorem is referred to as the Marcinkiewicz or
Marcinkiewicz–Zygmund interpolation theorem (see be-
low). Moreover, an important notion was introduced in
the same note: the so-called weak-𝐿𝑝 spaces, known as
Marcinkiewicz spaces now, are essential for the general
form of this theorem.

Meanwhile, Marcinkiewicz was appointed to the posi-
tion of Extraordinary Professor at the University of Poznań
in June 1939. On his way to Paris, he delivered a lecture
there and this, probably, was related to this impending ap-
pointment. Also, this was the reason to decline an offer of
professorship in the USA during his stay in Paris.

Marcinkiewicz still was in England when the general
mobilization was announced in Poland in the second half
of August 1939; the outbreak of war became imminent.
His colleagues advised him to stay in England, but his
ill-fated decision was to go back to Poland. He regarded
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Figure 2. Józef Marcinkiewicz.

himself as a patriot of his homeland, which is easily ex-
plainable by the fact that he was just eight years old (very
sensitive age in forming a personality) when the indepen-
dence of Poland was restored.

Contribution of Marcinkiewicz to Mathematics
Marcinkiewicz was a prolific author, as demonstrated by
the almost five dozen papers he wrote in just seven years
(1933–1939); see Collected Papers [13, pp. 31–33]. He was
open to collaboration; indeed, more than one third of his
papers (nineteen, to be exact) were written with five coau-
thors, of which the lion’s share belongs to his supervisor
Zygmund.

Marcinkiewicz is known, primarily, as an outstanding
analyst, whose best results deal with various aspects of real
analysis, in particular, theory of series (trigonometric and
others), inequalities, and approximation theory. He also
published several papers concerning complex and func-
tional analysis and probability theory. In the extensive pa-
per [9] dedicated to the centenary of Marcinkiewicz’s birth,
one finds a detailed survey of all his results.

This survey begins with the description of five topics
concerning functional analysis ([9, pp. 153–175]). No
doubt, the first two of them—the Marcinkiewicz interpo-
lation theorem and Marcinkiewicz spaces—are hallmarks

of genius. One indication of the ingenuity of the idea be-
hind these results is that the note [11], in which they first
appeared, is the most cited work of Marcinkiewicz.

Another important point about his work is that he skill-
fully applied methods of real analysis to questions border-
ing with complex analysis. A brilliant example of this mas-
tery—one more hallmark of genius—is the Marcinkiewicz
function 𝜇 introduced as an analogue of the Littlewood–
Paley function 𝑔. It is worth mentioning that the short pa-
per [10], in which 𝜇 first appeared, contains other fruitful
ideas developed by many mathematicians subsequently.

One more hallmark of genius one finds in the paper
[11] entitled “Sur les multiplicateurs des séries de Fourier.”
There are many generalizations of its results because of
their important applications. This work was the last of
eight papers that Marcinkiewicz published in the Studia
Mathematica; the first three he submitted during his stay
in Lwów, and they appeared in 1936.

Below, the above-mentioned results of Marcinkiewicz
are outlined in their historical context together with some
further developments. One can find a detailed presenta-
tion of all these results in the excellent textbook [18] based
on lectures of the eminent analyst Elias Stein, who made a
considerable contribution to further development of ideas
proposed by Marcinkiewicz.

Marcinkiewicz Interpolation Theorem
and Marcinkiewicz Spaces
There are two pillars of the interpolation theory: the clas-
sical Riesz–Thorin and Marcinkiewicz theorems. Each of
these serves as the basis for two essentially different ap-
proaches to interpolation of operators known as the com-
plex and real methods. The term “interpolation of opera-
tors” was, presumably, coined by Marcinkiewicz in 1939,
because Riesz and Thorin, who published their results in
1926 and 1938, respectively, referred to their assertions as
“convexity theorems.”

It is worth emphasizing again that a characteristic fea-
ture of Marcinkiewicz’s work was applying real methods
to problems that other authors treated with the help of
complex analysis. It was mentioned above that in his
paper [10] published in 1938, Marcinkiewicz introduced
the function 𝜇 without using complex variables but so
that it is analogous to the Littlewood–Paley function 𝑔,
whose definition involves these variables. In the same year,
1938, Thorin published his extension of the Riesz con-
vexity theorem, which exemplifies the approach based on
complex variables. Possibly this stimulatedMarcinkiewicz
to seek an analogous result with proof relying on real anal-
ysis. Anyway, Marcinkiewicz found his interpolation the-
orem and announced it in [12]; concurrently, a letter was
sent to Zygmund that contained the proof concerning a
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particular case. Ten years after World War II, Zygmund re-
constructed the general proof and published it in 1956;
for this reason the theorem is sometimes referred to as the
Marcinkiewicz–Zygmund interpolation theorem.

An excellent introduction to the interpolation theory
one finds in the book [1] based on the works of Jaak Pee-
tre (he passed away on 1 April 2019 at age eighty-three),
whose contribution to this theory cannot be overestimated.
In collaboration with Jacques-Louis Lions, he introduced
the “real method interpolation spaces” (see their funda-
mental article [8]), which can be considered as “descen-
dants” of the Marcinkiewicz interpolation theorem.

An important fact of Peetre’s biography is that his life
was severely changed during World War II (another re-
minder about that terrible time). With his parents, Jaak
escaped from Estonia in September 1944 just two days be-
fore his home town of Pärnu was destroyed in an air raid
of the Red Army. He was only ten years old when his fam-
ily settled in Lund (Sweden), where he spent most of his
life. But let us turn to mathematics again.
The Marcinkiewicz interpolation theorem for operators
in 𝐿𝑝(ℝ𝑛). We begin with this simple result because it has
numerous applications, being valid for subadditive opera-
tors mapping the Lebesgue spaces 𝐿𝑝(ℝ𝑛) with 𝑝 ≥ 1 into
themselves (see, e.g., [18, ch. 1, sect. 4]). We recall that an
operator 𝑇 ∶ 𝐿𝑝 → 𝐿𝑝 is subadditive if

|𝑇(𝑓1 + 𝑓2)(𝑥)| = |𝑇(𝑓1)(𝑥)| + |𝑇(𝑓2)(𝑥)| for every 𝑓1, 𝑓2 .
Furthermore, 𝑇 is of weak type (𝑟, 𝑟) if the inequality

𝛼𝑟mes{𝑥 ∶ |𝑇(𝑓)(𝑥)| > 𝛼} ≤ 𝐴𝑟‖𝑓‖𝑟𝑟
holds for all 𝛼 > 0 and all 𝑓 ∈ 𝐿𝑟 with 𝐴𝑟 independent of
𝛼 and 𝑓. Here, mes{… } denotes the Lebesgue measure of
the corresponding set, and

‖𝑓‖𝑝 = [∫
ℝ𝑛
|𝑓(𝑥)|𝑝 d𝑥]

1/𝑝

is the norm in 𝐿𝑝(ℝ𝑛). Now, we are in a position to formu-
late the following.

Theorem 1. Let 1 ≤ 𝑟1 < 𝑟2 < ∞, and let 𝑇 be a subadditive
operator acting simultaneously in 𝐿𝑟𝑖 (ℝ𝑛), 𝑖 = 1, 2. If it is of
weak type (𝑟𝑖, 𝑟𝑖) for 𝑖 = 1, 2, then for every 𝑝 ∈ (𝑟1, 𝑟2) the
inequality ‖𝑇(𝑓)‖𝑝 ≤ 𝐵‖𝑓‖𝑝 holds for all 𝑓 ∈ 𝐿𝑝(ℝ𝑛) with 𝐵
depending only on 𝐴𝑟1 , 𝐴𝑟2 , 𝑟1, 𝑟2, and 𝑝.

When 𝐵 is independent of 𝑓 in the last inequality, the
operator 𝑇 is of strong type (𝑝, 𝑝); it is clear that 𝑇 is also of
weak type (𝑝, 𝑝) in this case.

In the letter to Zygmund mentioned above, Marcinkie-
wicz included a proof of this theorem for the case 𝑟1 = 1
and 𝑟2 = 2. Presumably, it was rather simple; indeed, even
when 𝑟2 < ∞ is arbitrary, the proof is less than two pages
long in [18, ch. 1, sect. 4].

Marcinkiewicz spaces. Another crucial step, made by
Marcinkiewicz in [12], was the introduction of the weak
𝐿𝑝 spaces playing the essential role in his general interpola-
tion theorem. They are now called theMarcinkiewicz spaces
and usually denoted 𝐿𝑝,∞.

To give an idea of these spaces, let us consider ameasure
space (𝑈, Σ,𝑚) over real scalars with a nonnegative mea-
sure 𝑚 (just to be specific). For a real-valued 𝑓, which is
finite almost everywhere and𝑚-measurable, we introduce
its distribution function

𝑚({𝑥 ∶ |𝑓(𝑥)| > 𝜆}), 𝜆 ∈ (0,∞)

and put

|𝑓|𝑝,∞ = sup
𝜆>0

𝜆[𝑚({𝑥 ∶ |𝑓(𝑥)| > 𝜆})]1/𝑝 for 𝑝 ∈ [1,∞).

Then 𝐿𝑝,∞ = {𝑓 ∶ |𝑓|𝑝,∞ < ∞}, and it is clear that 𝐿𝑝 ⊂ 𝐿𝑝,∞
for 𝑝 ∈ [1,∞), because |𝑓|𝑝,∞ ≤ ‖𝑓‖𝑝 in view of Cheby-
shev’s inequality. The Marcinkiewicz space for 𝑝 = ∞ is
𝐿∞ by definition.

It occurs that |𝑓|𝑝,∞ is not a norm for 𝑝 ∈ [1,∞), but a
quasi-norm because

|𝑓 + 𝑔|𝑝,∞ ≤ 2(|𝑓|𝑝,∞ + |𝑔|𝑝,∞)

(see, e.g., [1, p. 7]). However, it is possible to endow 𝐿𝑝,∞,
𝑝 ∈ (1,∞), with a norm ‖⋅‖𝑝,∞, converting it into a Banach
space. Moreover, the inequality

|𝑓|𝑝,∞ ≤ ‖𝑓‖𝑝,∞ ≤ 𝑝(𝑝 − 1)−1|𝑓|𝑝,∞
holds for all 𝑓 ∈ 𝐿𝑝,∞. It is worth mentioning that 𝐿𝑝,∞
belongs (as a limiting case) to the class of Lorentz spaces
𝐿𝑝,𝑞, 𝑞 ∈ [1,∞] (see, e.g., [1, sect. 1.6] and references cited
in this book).

Another generalization of 𝐿𝑝,∞, known as theMarcinkie-
wicz space 𝑀𝜑, is defined with the help of a nonnegative,
concave function 𝜑 ∈ 𝐶[0,∞). This Banach space con-
sists of all (equivalence classes of) measurable functions
for which the norm

‖𝑓‖𝜑 = sup
𝑡>0

1
𝜑(𝑡) ∫

𝑡

0
𝑓∗(𝑠) d𝑠

is finite. Here 𝑓∗ denotes the nonincreasing rearrangement
of 𝑓, i.e.,

𝑓∗(𝑠) = inf
𝜆>0

{𝜆 ∶ 𝑚({𝑥 ∶ |𝑓(𝑥)| > 𝜆}) ≤ 𝑠} for 𝑠 ≥ 0,

and so is nonnegative and right-continuous. Moreover, its
distribution function 𝑚({𝑥 ∶ |𝑓∗(𝑥)| > 𝜆}) coincides with
that of 𝑓. If 𝜑(𝑡) = 𝑡1−1/𝑝, then the corresponding Marcin-
kiewicz space is 𝐿𝑝,∞, whereas 𝜑(𝑡) ≡ 1 and 𝜑(𝑡) = 𝑡 give 𝐿1
and 𝐿∞, respectively.
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The Marcinkiewicz interpolation theorem for bounded
linear operators. This kind of continuous operator is usu-
ally considered as mapping one normed space to another
one, in which case the operator’s norm is an important
characteristic. However, the latter can be readily general-
ized for a mapping of 𝐿𝑝 to 𝐿𝑝,∞. Indeed, if |𝑇𝑓|𝑝,∞ ≤
𝐶‖𝑓‖𝑝, then it is natural to introduce the norm (or quasi-
norm) of 𝑇 as the infimum over all possible values of 𝐶.
Now we are in a position to formulate the following.

Theorem 2. Let 𝑝0, 𝑞0, 𝑝1, 𝑞1 ∈ [1,∞] satisfy the inequali-
ties 𝑝0 ≤ 𝑞0, 𝑝1 ≤ 𝑞1, and 𝑞0 ≠ 𝑞1, and let 𝑝, 𝑞 ∈ [1,∞] be
such that 𝑝 ≤ 𝑞 and the equalities

1
𝑝 = 1 − 𝜃

𝑝0
+ 1
𝑝1

and
1
𝑞 = 1 − 𝜃

𝑞0
+ 1
𝑞1

hold for some 𝜃 ∈ (0, 1). If 𝑇 is a linear operator that maps 𝐿𝑝0
into 𝐿𝑞0,∞ and its norm is 𝑁0 and simultaneously 𝑇 ∶ 𝐿𝑝1 →
𝐿𝑞1,∞ has 𝑁1 as its norm, then 𝑇 maps 𝐿𝑝 into 𝐿𝑞 and its norm
𝑁 satisfies the estimate

𝑁 ≤ 𝐶𝑁1−𝜃
0 𝑁𝜃

1 , (1)

with 𝐶 depending on 𝑝0, 𝑞0, 𝑝1, 𝑞1, and 𝜃.
The convexity inequality (1) is a characteristic feature

of the interpolation theory. The general form of this theo-
rem (it is valid for quasi-additive operators, whose special
case are subadditive ones described prior to Theorem 1) is
proved in [23, ch. XII, sect. 4]. In particular, it is shown
that one can take

𝐶 = 2 ( 𝑞
|𝑞 − 𝑞0|

+ 𝑞
|𝑞 − 𝑞1|

)
1/𝑞 𝑝(1−𝜃)/𝑝00 𝑝𝜃/𝑝11

𝑝1/𝑝 ;

see [23, Vol. II, p. 114, formula (4.18)], where, unfortu-
nately, the notation differs from that adopted here. Special
cases of Theorem 2 and diagrams illustrating them can be
found in [9, pp. 155–156]. It should be emphasized that
the restriction 𝑝 ≤ 𝑞 is essential; indeed, as early as 1964,
R. A. Hunt [6] constructed an example demonstrating that
Theorem 2 is not true without it. For a description of this
example see, e.g., [1, pp. 16–17].

It was Marcinkiewicz himself who proposed an exten-
sion of his interpolation theorem to other function spaces;
namely, the so-called diagonal case (when 𝑝0 = 𝑞0 and
𝑝1 = 𝑞1) of his theorem is formulated for Orlicz spaces
in [12]. References to papers containing further results on
interpolation in these and other spaces (e.g., Lorentz and
𝑀𝜑) can be found in [1, pp. 128–129] and [9, pp. 163–
166].
Applications of the interpolation theorems. (1) In his
monograph [23], Zygmund gave a detailed study of the
one-dimensional Fourier transform

𝐹(𝑓)(𝜉) = 1
√2𝜋

∫
ℝ
𝑓(𝑥) exp{−𝑖 𝜉𝑥} d𝑥, 𝜉 ∈ ℝ.

See Vol. II, ch. XVI, sects. 2 and 3, where, in particular,
it is demonstrated that 𝐹, originally defined on a dense
set in 𝐿𝑝, 𝑝 ∈ [1, 2], is extensible to the whole space as a
bounded operator 𝐹 ∶ 𝐿𝑝 → 𝐿𝑝′ , 𝑝′ = 𝑝/(𝑝−1), and so the
integral converges in 𝐿𝑝′ . To prove this assertion and its
𝑛-dimensional analogue one can use Theorem 2. Indeed,
𝐹 ∶ 𝐿1 → 𝐿∞ is bounded (this is straightforward to see),
and by Plancherel’s theorem 𝐹 is bounded on 𝐿2, and so
this theorem is applicable. On the other hand, the Riesz–
Thorin theorem, which has no restriction 𝑝 ≤ 𝑞, yields a
more complete result valid for the inverse transform 𝐹−1 as
well. The latter operator acting from 𝐿𝑝′ to 𝐿𝑝 is bounded;
here 𝑝′ ∈ [2,∞), and so 𝑝 = 𝑝′/(𝑝′ − 1) ∈ (1, 2].

(2) In studies of conjugate Fourier series, the singular
integral operator (the periodic Hilbert transform)

𝐻(𝑓)(𝑠) = 1
2𝜋 lim

𝜖→0
∫
𝜖≤|𝑡|≤𝜋

𝑓(𝑠 − 𝑡) cot 𝑡2 d𝑡

plays an important role. Indeed, by linearity it is sufficient
to define 𝐻 on a basis in 𝐿2(−𝜋, 𝜋), and the relations

𝐻(cos 𝑛𝑡) = sin 𝑛𝑠 for 𝑛 ≥ 0, 𝐻(sin 𝑛𝑡) = − cos 𝑛𝑠 for 𝑛 ≥ 1

show that it expresses passing from a trigonometric series
to its conjugate. Moreover, these formulae show that 𝐻 is
bounded on 𝐿2(−𝜋, 𝜋) and its norm is equal to one.

In the mid-1920s, Marcel Riesz obtained his celebrated
result about this operator; first, he announced it in a brief
note in the Comptes rendus de l’Académie des Sciences Paris,
and three years later published his rather long proof that
𝐻 is bounded on 𝐿𝑝(−𝜋, 𝜋) for 𝑝 ∈ (1,∞); i.e., for every
finite 𝑝 > 1 there exists 𝐴𝑝 > 0 such that

‖𝐻(𝑓)‖𝑝 ≤ 𝐴𝑝‖𝑓‖𝑝 for all 𝑓 ∈ 𝐿𝑝(−𝜋, 𝜋). (2)

However, (2) does not hold for 𝑝 = 1 and∞; see [23, Vol. I,
ch. VII, sect. 2] for the corresponding examples and a proof
of this inequality.

There are several different proofs of this theorem; the
original proof of M. Riesz was reproduced in the first edi-
tion of Zygmund’s monograph [23], which appeared in
1935. In the second edition published in 1959, this proof
was replaced by that of Calderón obtained in 1950. Let us
outline another proof based on the Marcinkiewicz inter-
polation theorem analogous to Theorem 1 but involving
𝐿𝑝-spaces on (−𝜋, 𝜋) instead of the spaces on ℝ.

First we notice that it is sufficient to prove (2) only for
𝑝 ∈ (1, 2]. Indeed, assuming that this is established, then
for 𝑓 ∈ 𝐿𝑝 and 𝑔 ∈ 𝐿𝑝′ we have

∫
𝜋

−𝜋
[𝐻(𝑓)(𝑠)] 𝑔(−𝑠) d𝑠 ≤ 𝐴𝑝‖𝑓‖𝑝 ‖𝑔‖𝑝′

by the Hölder inequality (as above 𝑝′ = 𝑝/(𝑝 − 1), and so
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𝑝′ ≥ 2 when 𝑝 ≤ 2). Since

∫
𝜋

−𝜋
[𝐻(𝑓)(𝑠)] 𝑔(−𝑠) d𝑠 = ∫

𝜋

−𝜋
𝑓(−𝑠) [𝐻(𝑔)(𝑠)] d𝑠 ,

the inequality ‖𝐻(𝑔)‖𝑝′ ≤ 𝐴−1𝑝 ‖𝑔‖𝑝′ is a consequence of
the assertion converse to the Hölder inequality.

It wasmentioned above that𝐻 is bounded in 𝐿2. Hence,
in order to apply Theorem 1 for 𝑝 ∈ (1, 2], it is sufficient
to show that this operator is of weak type (1, 1), and this is
an essential part of Calderón’s proof; see [23, Vol. I, ch. IV,
sect. 3]. Moreover, an improvement of the latter proof al-
lowed S. K. Pichorides [16] to obtain the least value of the
constant 𝐴𝑝 in (2). It occurs that 𝐴𝑝 = tan𝜋/(2𝑝) and
cot 𝜋/(2𝑝) is this value for 𝑝 ∈ (1, 2] and 𝑝 ≥ 2, respec-
tively.

There are many other applications of interpolation the-
orems in analysis; see, e.g., [1, ch. 1], [23, ch. XII], and
references cited in these books.
Further development of interpolation theorems. Results
constituting the interpolation space theory were obtained
in the early 1960s and are classical now. This theory
was created in the works of Nachman Aronszajn, Alberto
Calderón, Mischa Cotlar, Emilio Gagliardo, Selim Grig-
orievich Krein, Jacques-Louis Lions, and Jaak Peetre, to
list a few. We leave aside several versions of complex in-
terpolation spaces developed from the Riesz–Thorin the-
orem (see, e.g., [1, ch. 4]) and concentrate on “espaces
de moyennes” introduced by Lions and Peetre in their
celebrated article [8]. These “real method interpolation
spaces,” usually denoted (𝐴0, 𝐴1)𝜃,𝑝, are often considered
as “descendants” of the Marcinkiewicz interpolation theo-
rem.

Prior to describing these spaces, it is worth mention-
ing another germ of interpolation theory originating from
Lwów. Problem 87 in the Scottish Book [14] posed by Ba-
nach demonstrates his interest in nonlinear interpolation.
Presumably, it was formulated duringMarcinkiewicz’s stay
in Lwów. Indeed, he solved problems 83 and 106 in
[14], which were posed before and after, respectively, Ba-
nach’s problem on interpolation. A positive solution of
the latter problem (due to L. Maligranda) is presented in
[14, pp. 163–170].

Let us turn to defining the family of spaces {(𝐴0, 𝐴1)𝜃,𝑝}
involved in the real interpolation method; here 𝜃 ∈ (0, 1)
and 𝑝 ∈ [1,∞]. In what follows, we write 𝐴𝜃,𝑝 instead
of (𝐴0, 𝐴1)𝜃,𝑝 for the sake of brevity. Let 𝐴0 and 𝐴1 be
two Banach spaces, both continuously embedded in some
(larger) Hausdorff topological vector space. Then for a pair
(𝜃, 𝑝) the space 𝐴𝜃,𝑝 with 𝑝 < ∞ consists of all 𝑎 ∈ 𝐴0+𝐴1

for which the norm

‖𝑎‖𝜃,𝑝 = {∫
∞

0
[𝑡−𝜃 𝐾(𝑡, 𝑎)]

𝑝 d𝑡
𝑡 }

1/𝑝

is finite. Here 𝐾(𝑡, 𝑎) is defined on 𝐴0 + 𝐴1 for 𝑡 ∈ (0,∞)
by

inf
𝑎0,𝑎1

{‖𝑎0‖𝐴0+𝑡‖𝑎1‖𝐴1 ∶ 𝑎0 ∈ 𝐴0, 𝑎1 ∈ 𝐴1 and 𝑎0+𝑎1 = 𝑎}.

This𝐾-functional was introduced by Peetre. If 𝑝 = ∞, then
the expression sup𝑡>0{𝑡−𝜃 𝐾(𝑡, 𝑎)} gives the norm ‖𝑎‖𝜃,∞
when finite.

Every 𝐴𝜃,𝑝 is an intermediate space with respect to the
pair (𝐴0, 𝐴1), i.e.,

𝐴0 ∩ 𝐴1 ⊂ 𝐴𝜃,𝑝 ⊂ 𝐴0 + 𝐴1.
Moreover, if 𝐴0 ⊂ 𝐴1, then

𝐴0 ⊂ 𝐴𝜃0,𝑝0 ⊂ 𝐴𝜃1,𝑝1 ⊂ 𝐴1,
provided either 𝜃0 > 𝜃1 or 𝜃0 = 𝜃1 and 𝑝0 ≤ 𝑝1. For any
𝑝, it is convenient to put 𝐴0,𝑝 = 𝐴0 and 𝐴1,𝑝 = 𝐴1. Now
we are in a position to explain what the interpolation of an
operator is in terms of the family {𝐴𝜃,𝑝} and another family
of spaces {𝐵𝜃,𝑝} constructed by using some Banach spaces
𝐵0 and 𝐵1 in the same way as 𝐴0 and 𝐴1.

Let 𝑇 ∶ 𝐴0 + 𝐴1 → 𝐵0 + 𝐵1 be a linear operator such
that its norm as the operator mapping 𝐴0 (𝐴1) to 𝐵0 (𝐵1)
is equal to 𝑀0 (𝑀1). Then the operator 𝑇 ∶ 𝐴𝜃,𝑝 →
𝐵𝜃,𝑝 is also bounded, and its norm is less than or equal
to 𝑀1−𝜃

0 𝑀𝜃
1 . Along with the method based on the 𝐾-

functional, there is an equivalent method (also developed
by Peetre) involving the so-called 𝐽-functional. Further de-
tails concerning this approach to interpolation theory can
be found in [1, chs. 3 and 4].

The Marcinkiewicz Function
In the Annales de la Société Polonaise de Mathématique, vol-
ume 17 (1938), Marcinkiewicz published two short pa-
pers. Two remarkable integral operators were considered
in the first of these notes (see [10] and [13, pp. 444–451]);
they and their numerous generalizations became indis-
pensable tools in analysis. One of these operators is al-
ways called the “Marcinkiewicz integral”; see [23, ch. IV,
sect. 2] for its definition and properties. In particular, it
is used for investigation of the structure of a measurable
set near an “almost arbitrary” point; see [18, sects. 2.3 and
2.4], whereas further references to papers describing some
of its generalizations can be found in themonographs [18]
and [23]. The second operator is usually referred to as the
“Marcinkiewicz function” (see, e.g., [9, pp. 192–194]), but
it also appears as the “Marcinkiewicz integral.” Presum-
ably, the mess with names began as early as 1944, when
Zygmund published the extensive article [22], section 2 of
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which was titled “On an Integral of Marcinkiewicz.” In
fact, this 14-page section is devoted to a detailed study of
the Marcinkiewicz function 𝜇, whose properties were just
outlined by Marcinkiewicz himself in [10]. It is not clear
whether Zygmund had already received information about
Marcinkiewicz’s death when he decided to present in de-
tail the results from [10] (the discovery of mass graves in
the Katyń forest was announced by the Nazi government
in April 1943).

Zygmund begins his presentation with a definition of
the Littlewood–Paley function 𝑔(𝜃; 𝑓), which is a nonlin-
ear operator applied to an integrable, 2𝜋-periodic 𝑓. The
purpose of introducing 𝑔(𝜃; 𝑓) was to provide a characteri-
zation of the 𝐿𝑝-norm ‖𝑓‖𝑝 in terms of the Poisson integral
of 𝑓. After describing some properties of 𝑔(𝜃), Zygmund
notes:

It is natural to look for functions analogous to 𝑔(𝜃)
but defined without entering the interior of the
unit circle.

After a reference to [10], Zygmund continues:

Marcinkiewicz had the right idea of introducing
the function

𝜇(𝜃) = 𝜇(𝜃; 𝑓)

= {∫
𝜋

0

[𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)]2
𝑡3 d𝑡}

1/2

= {∫
𝜋

0
𝑡[𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)

𝑡2 ]
2
d𝑡}

1/2

where 𝐹(𝜃) is the integral of 𝑓,

𝐹(𝜃) = 𝐶 +∫
𝜃

0
𝑓(𝑢) d𝑢 .

More generally, he considers the functions

𝜇𝑟(𝜃) = {∫
𝜋

0

|𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)|𝑟
𝑡𝑟+1 d𝑡}

1/𝑟

= {∫
𝜋

0
𝑡𝑟−1 |||

𝐹(𝜃 + 𝑡) + 𝐹(𝜃 − 𝑡) − 2𝐹(𝜃)
𝑡2

|||
𝑟
d𝑡}

1/𝑟
,

so that 𝜇2(𝜃) = 𝜇(𝜃). He proves the following facts
which are clearly analogues of the corresponding
properties of 𝑔(𝜃).

These facts are the estimates

‖𝜇𝑞‖𝑞 ≤ 𝐴𝑞‖𝑓‖𝑞 and ‖𝑓‖𝑝 ≤ 𝐴𝑝‖𝜇𝑝‖𝑝
valid for 𝑞 ≥ 2 and 1 < 𝑝 ≤ 2, respectively, where 𝑓
has the zero mean value in the second inequality and the
assertion: For every 𝑝 ∈ (1, 2] there exists a continuous, 2𝜋-
periodic function 𝑓 such that 𝜇𝑝(𝜃; 𝑓) = ∞ for almost every
𝜃.

Furthermore, Marcinkiewicz conjectured that for 𝑝 > 1
the inequalities

𝐴𝑝‖𝑓‖𝑝 ≤ ‖𝜇‖𝑝 ≤ 𝐵𝑝‖𝑓‖𝑝 (3)

hold, where again 𝑓must have the zero mean value in the
second inequality. Moreover, he foresaw that it would not
be easy to prove these inequalities; indeed, the proof given
by Zygmund in his article [22] is more than 11 pages long.

The first step towards generalization of the Marcinkie-
wicz function was made by Daniel Waterman; his paper
[21] was published seven (!) years after presentation of the
work to the AMS. However, its abstract appeared in the
Proceedings of the International Congress of Mathematicians
held in 1954 in Amsterdam. Waterman considered the 𝜇-
function

𝜇(𝜏; 𝑓) = {∫
∞

0

[𝐹(𝜏 + 𝑡) + 𝐹(𝜏 − 𝑡) − 2𝐹(𝜏)]2
𝑡3 d𝑡}

1/2
,

where 𝜏 ∈ (−∞,∞) and 𝐹 is a primitive of 𝑓 ∈ 𝐿𝑝(−∞,∞),
𝑝 > 1. His proof of inequalities (3) for 𝜇(𝜏; 𝑓) heavily re-
lies on the M. Riesz theorem about conjugate functions on
ℝ1 (see [21, p. 130] for the formulation), and its proof in-
volves the Marcinkiewicz interpolation theorem described
above.

Another consequence of inequalities (3) for 𝜇(𝜏; 𝑓) is a
characterization of the Sobolev space𝑊 1,𝑝(ℝ), 𝑝 ∈ (1,∞).
Indeed, putting

M(𝜏; 𝑓) = {∫
∞

0

[𝑓(𝜏 + 𝑡) + 𝑓(𝜏 − 𝑡) − 2𝑓(𝜏)]2
𝑡3 d𝑡}

1/2

for 𝑓 ∈ 𝑊 1,𝑝(ℝ), we have thatM(𝜏; 𝑓) = 𝜇(𝜏; 𝑓′). Then (3)
can be written as

𝐴𝑝‖𝑓′‖𝑝 ≤ ‖M(⋅; 𝑓)‖𝑝 ≤ 𝐵𝑝‖𝑓′‖𝑝 ,

which implies the following assertion. Let 𝑝 ∈ (1,∞).
Then 𝑓 ∈ 𝑊 1,𝑝(ℝ) if and only if 𝑓 ∈ 𝐿𝑝(ℝ) and M(⋅; 𝑓) ∈
𝐿𝑝(ℝ).

Stein extended these results to higher dimensions in the
late 1950s and early 1960s (it is worth mentioning that
𝜇 is referred to as the Marcinkiewicz integral in his paper
[17]). For this purpose he applied the real-variable tech-
nique used in the generalization of the Hilbert transform

P.V.∫
∞

0

𝑓(𝑥 + 𝑡) − 𝑓(𝑥 − 𝑡)
𝑡 d𝑡

to higher dimensions. Indeed, this can be written as

∫
∞

0

𝐹(𝑥 + 𝑡) + 𝐹(𝑥 − 𝑡) − 2𝐹(𝑥)
𝑡2 d𝑡,

which resembles the expression for 𝜇(𝜏; 𝑓), and so Stein, in
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his own words, was

guided by the techniques used by A. P. Calderón
and A. Zygmund [2] in their study of the 𝑛-di-
mensional generalizations of the Hilbert trans-
form; connected with this are some earlier ideas
of Marcinkiewicz.

The definition of singular integral given in [2], to which
Stein refers, involves a function Ω(𝑥) defined for 𝑥 ∈ ℝ𝑛

and assumed (i) to be homogeneous of degree zero, i.e.,
to depend only on 𝑥′ = 𝑥/|𝑥|; (ii) to satisfy the Hölder
condition with exponent 𝛼 ∈ (0, 1]; and (iii) to have the
zero mean value over the unit sphere in ℝ𝑛. Then

𝑆(𝑓)(𝑥) = lim
𝜖→0

∫
|𝑦|>𝜖

Ω(𝑦′)
|𝑦|𝑛 𝑓(𝑥 − 𝑦) d𝑦

exists almost everywhere provided 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑝 ∈ [1,∞).
Furthermore, this singular integral operator is bounded in
𝐿𝑝(ℝ𝑛) for 𝑝 > 1; i.e., the inequality ‖𝑆(𝑓)‖𝑝 ≤ 𝐴𝑝‖𝑓‖𝑝
holds with 𝐴𝑝 independent of 𝑓.

Moreover, in the section dealing with background facts,
Stein notes that 𝜇 is a nonlinear operator and writes (see
[17, p. 433]):

An “interpolation” theorem of Marcinkiewicz is
very useful in this connection.

In quoting the result of Marcinkiewicz, [. . . ] we
shall not aim at generality. For the sake of sim-
plicity we shall limit ourselves to the special case
that is needed.

After that the required form of the interpolation theorem
(see Theorem 1 above) is formulated and used later in the
paper, thus adding one of the first items in the now long
list of its applications. Since the term interpolation was
novel, quotation marks are used by Stein in the quoted
piece. Indeed, Zygmund’s proof of the Marcinkiewicz the-
orem had appeared in 1956, just two years earlier than
Stein’s article.

Stein begins his generalization of the Marcinkiewicz
function 𝜇(𝜏; 𝑓) with the case when 𝑓 ∈ 𝐿𝑝(ℝ𝑛), 𝑝 ∈ [1, 2].
Realizing the analogy described above, he puts

𝐹𝑡(𝑥) = ∫
|𝑦|≤𝑡

Ω(𝑦′)
|𝑦|𝑛−1 𝑓(𝑥 − 𝑦) d𝑦 , 𝑥 ∈ ℝ𝑛, (4)

whereΩ satisfies conditions (i)–(iii), and notes that if 𝑛 =
1 and Ω(𝑦) = sign 𝑦, then

𝐹𝑡(𝑥) = 𝐹(𝑥+𝑡)+𝐹(𝑥−𝑡)−2𝐹(𝑥) with 𝐹(𝑥) =∫
𝑥

0
𝑓(𝑠) d𝑠.

Therefore, it is natural to define the 𝑛-dimensional Marcin-
kiewicz function as follows:

𝜇(𝑥; 𝑓) = {∫
∞

0

[𝐹𝑡(𝑥)]2
𝑡3 d𝑡}

1/2
. (5)

Stein begins his investigation of properties of this func-
tion by proving that ‖𝜇(⋅; 𝑓)‖2 ≤ 𝐴‖𝑓‖2, where 𝐴 is
independent of 𝑓, and his proof involving Plancherel’s
theorem is not elementary at all. Even less elementary
is his proof that 𝜇(⋅; 𝑓) is of weak type (1, 1). Then
the Marcinkiewicz interpolation theorem (see Theorem 1
above) implies that ‖𝜇(⋅; 𝑓)‖𝑝 ≤ 𝐴‖𝑓‖𝑝 for 𝑝 ∈ (1, 2] pro-
vided 𝑓 ∈ 𝐿𝑝(ℝ𝑛). For all 𝑝 ∈ (1,∞) this inequality is
proved in [17] with assumptions (i)–(iii) changed to the
following ones: Ω(𝑥′) is absolutely integrable on the unit
sphere and is odd there, i.e.,Ω(−𝑥′) = −Ω(𝑥′). A few years
later, A. Benedek, A. P. Calderón, and R. Panzone demon-
strated that for a 𝐶1-functionΩ, condition (iii) implies the
last inequality for all 𝑝 ∈ (1,∞).

In another note, Stein obtained the following general-
ization of the one-dimensional result.

Let 𝑝 ∈ (2𝑛/(𝑛 + 2),∞) and 𝑛 ≥ 2. Then 𝑓 belongs to the
Sobolev space 𝑊 1,𝑝(ℝ𝑛) if and only if 𝑓 ∈ 𝐿𝑝(ℝ𝑛) and

{∫
ℝ𝑛

[𝑓(⋅ + 𝑦) + 𝑓(⋅ − 𝑦) − 2𝑓(⋅)]2
|𝑦|𝑛+2 d𝑦}

1/2
∈ 𝐿𝑝(ℝ𝑛).

For 𝑛 > 2 this does not cover 𝑝 ∈ (1, 2𝑛/(𝑛 + 2)] and so is
weaker than the assertion formulated above for 𝑛 = 1.

In the survey article [9, pp. 193–194], one finds a list of
papers concerning the Marcinkiewicz function. In particu-
lar, further properties of 𝜇 were considered by A. Torchin-
sky and S. Wang [19] in 1990, whereas T. Walsh [20] pro-
posed a modification of the definition (4), (5) in 1972.

Multipliers of Fourier Series and Integrals
During his stay in Lwów, Marcinkiewicz collaborated with
Stefan Kaczmarz and Juliusz Schauder,2 who had awak-
ened his interest inmultipliers of orthogonal series. Studies
in this area of analysis were initiated by Hugo Steinhaus in
the 1920s; in its general form, the problem of multipliers
is as follows. Let 𝐵1 be a Banach space with a Schauder
basis {𝑔𝑛}∞𝑛=1. The (linear) operator 𝑇 is called a multiplier
when there is a sequence {𝑚𝑛}∞𝑛=1 of scalars of this space
and 𝑇 acts as follows:

𝐵1 ∋ 𝑓 =
∞
∑
𝑛=1

𝑐𝑛𝑔𝑛 → 𝑇𝑓 ∼
∞
∑
𝑛=1

𝑚𝑛𝑐𝑛𝑔𝑛 .

Here ∼means that the second sum assigned as 𝑇𝑓 can be-
long to the same space 𝐵1 or be an element of another Ba-
nach space 𝐵2; this depends on properties of the sequence.
Multipliers of Fourier series are of paramount interest, and
this was the topic of the remarkable paper [11] published
by Marcinkiewicz in 1939.

2Both perished in World War II. Being in the reserve, Kaczmarz was drafted
and killed during the first week of war; the circumstances of his death are un-
clear. Schauder was in hiding in occupied Lwów, and the Gestapo killed him in
1943 while he was trying to escape arrest.
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Not long before Marcinkiewicz’s visit to Lwów started,
Kaczmarz investigated some properties of multipliers in
the function spaces (mainly 𝐿𝑝(0, 1) and 𝐶[0, 1]) under
rather general assumptions about the system {𝑔𝑛}∞𝑛=1. Fur-
ther results about multiplier operators were obtained in
the joint paper [7] of Kaczmarz and Marcinkiewicz. It
was submitted to the Studia Mathematica in June 1937;
i.e., their collaboration lasted for another year after
Marcinkiewicz left Lwów. This paper has the same title as
that of Kaczmarz and concerns the case when 𝐿𝑝(0, 1) with
𝑝 ≠ ∞ is mapped to 𝐿𝑞(0, 1), 𝑞 ∈ [1,∞]; it occurs that the
case 𝑞 = ∞ is the simplest one. In this paper, it is assumed
that every function 𝑔𝑛 is bounded, whereas the sequence
{𝑔𝑛}∞𝑛=1 is closed in 𝐿1(0, 1). In each of four theorems that
differ by the ranges of 𝑝 and 𝑞 involved, certain conditions
are imposed on {𝑚𝑛}∞𝑛=1, and these conditions are neces-
sary and sufficient for the sequence to define a multiplier
operator 𝑇 ∶ 𝐿𝑝 → 𝐿𝑞.

After returning to Wilno, Marcinkiewicz kept on his
studies of multipliers initiated in Lwów, and in May 1938,
he submitted (again to the Studia Mathematica) the semi-
nal paper [11], in which the main results are presented in a
curious way. Namely, Theorems 1 and 2, concerning mul-
tipliers of Fourier series and double Fourier series, are for-
mulated in the reverse order. Presumably, the reason for
this is the importance of multiple Fourier series for appli-
cations and generalizations. Let us formulate Theorem 1
in a slightly updated form.

Let 𝑓 ∈ 𝐿𝑝(0, 2𝜋), 𝑝 ∈ (1,∞), be a real-valued function
and let its Fourier series be

𝑎0/2 +
∞
∑
𝑛=1

𝐴𝑛(𝑥), 𝑤ℎ𝑒𝑟𝑒 𝐴𝑛(𝑥) = 𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥.

If a bounded sequence {𝜆𝑛}∞𝑛=1 ⊂ ℝ is such that

2𝑘+1

∑
𝑛=2𝑘

|𝜆𝑛 − 𝜆𝑛+1| ≤ 𝑀 for all 𝑘 = 0, 1, 2, … , (6)

where𝑀 is a constant independent of 𝑘, then the mapping 𝑓 ↦
∑∞

𝑛=1 𝜆𝑛 𝐴𝑛 is a bounded operator in 𝐿𝑝(0, 2𝜋).
It is well known that for 𝑝 = 2 this theorem is true with

condition (6) omitted, but this is not mentioned in [11].
The assumptions that 𝑓 is real-valued and {𝜆𝑛}∞𝑛=1 ⊂ ℝ
were not stated in [11] explicitly but used in the proof.
This was noted by Solomon Grigorievich Mikhlin [15],
who extended this theorem to complex-valued multipliers
and functions. Also, he used the exponential form of the
Fourier expansion:

𝑓(𝑥) =
∞
∑

𝑛=−∞
𝑐𝑛 exp 𝑖𝑛𝑥 .

The trigonometric form was used by Marcinkiewicz for
double Fourier series as well, and his sufficient condi-
tions on bounded real multipliers {𝜆𝑚𝑛} look rather awk-
ward. Now, the restrictions on {𝜆𝑚𝑛} ⊂ ℂ are usually ex-
pressed in a rather condensed form by using the so-called
dyadic intervals; see, e.g., [18, sect. 5.1]. Applying these
conditions to multipliers acting on the expansion

∞
∑

𝑚,𝑛=−∞
𝑐𝑚𝑛 exp 𝑖{𝑚𝑥 + 𝑛𝑦}

of 𝑓 ∈ 𝐿𝑝((0, 2𝜋)2), 𝑝 ∈ (1,∞), one obtains an updated
formulation of themultiplier theorem; see, e.g., [9, p. 201].

A simple corollary derived by Marcinkiewicz from this
theorem is as follows (see [11, p. 86]). The fractions

𝑚2

𝑚2 + 𝑛2 ,
𝑛2

𝑚2 + 𝑛2 ,
|𝑚𝑛|

𝑚2 + 𝑛2 (7)

provide examples of multipliers in 𝐿𝑝 for double Fourier
series. The reason to include these examples was to an-
swer a question posed by Schauder, and this is specially
mentioned in a footnote. Moreover, after remarking that
his Theorem 2 admits an extension to multiple Fourier se-
ries, Marcinkiewicz added a straightforward generalization
of formulae (7) to higher dimensions, again referring to
Schauder’s question. This is evidence that the questionwas
an important stimulus for Marcinkiewicz in his work.

A natural way to generalize Marcinkiewicz’s theorems is
to consider multipliers of Fourier integrals. Study of these
operators was initiated by Mikhlin in 1956; see note [15],
in which the first result of that kind was announced. Sev-
eral years later, Mikhlin’s theorem was improved by Lars
Hörmander [5], and since then it has been widely used for
various purposes. To formulate this theorem we need the
𝑛-dimensional Fourier transform

𝐹(𝑓)(𝜉) = (2𝜋)−𝑛/2∫
ℝ𝑛
𝑓(𝑥) exp{−𝑖 𝜉 ⋅ 𝑥} d𝑥, 𝜉 ∈ ℝ𝑛,

defined for 𝑓 ∈ 𝐿2(ℝ𝑛) ∩ 𝐿𝑝(ℝ𝑛), 𝑝 ∈ (1,∞). It is clear
that any bounded measurable function Λ on ℝ𝑛 defines
the mapping

𝑇Λ(𝑓)(𝑥) = 𝐹−1[Λ(𝜉)𝐹(𝑓)(𝜉)](𝑥) , 𝑥 ∈ ℝ𝑛,
such that 𝑇Λ(𝑓) ∈ 𝐿2(ℝ𝑛). If 𝑇Λ(𝑓) is also in 𝐿𝑝(ℝ𝑛) and 𝑇Λ
is a bounded operator, i.e.,

‖𝑇Λ(𝑓)‖𝑝 ≤ 𝐵𝑝,𝑛‖𝑓‖𝑝 for all 𝑓 ∈ 𝐿𝑝(ℝ𝑛) (8)

with 𝐵𝑝 independent of 𝑓, then Λ is called a multiplier
for 𝐿𝑝.

The description of all multipliers for 𝐿2 is known as well
for 𝐿1 and 𝐿∞ (it is the same for these two spaces); see [18,
pp. 94–95]. However, the question about characterization
of the whole class of multipliers for other values of 𝑝 is far

698 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 67, NUMBER 5



from resolved. The following assertion gives widely used
sufficient conditions.

Theorem (Mikhlin, Hörmander). Let Λ be a function of the
𝐶𝑘-class in the complement of the origin of ℝ𝑛. Here 𝑘 is the
least integer greater than 𝑛/2. If there exists 𝐵 > 0 such that

|𝜉|ℓ |||
𝜕ℓΛ(𝜉)

𝜕𝜉𝑗1𝜕𝜉𝑗2 ⋯𝜕𝜉𝑗ℓ
||| ≤ 𝐵 , 1 ≤ 𝑗1 < 𝑗2 < ⋯ < 𝑗ℓ ≤ 𝑛 ,

for all 𝜉 ∈ ℝ𝑛, ℓ = 0, … , 𝑘, and all possible ℓ-tuples, then
inequality (8) holds; i.e., Λ is a multiplier for 𝐿𝑝.

In various versions of this theorem, different assump-
tions are imposed on the differentiability of Λ. In par-
ticular, Hörmander [5, pp. 120–121] replaced the point-
wise inequality for weighted derivatives of Λ by a weaker
one involving certain integrals (see also [18, p. 96]). Re-
cently, Loukas Grafakos and Lenka Slavíková [4] obtained
new sufficient conditions for Λ in the multiplier theorem,
thus improving Hörmander’s result. Their conditions are
optimal in a certain sense explicitly described in [4].

Corollary. Every function that is smooth everywhere except at
the origin and is homogeneous of degree zero is a Fourier multi-
plier for 𝐿𝑝.

Its immediate consequence is the Schauder estimate

‖
‖‖

𝜕2𝑢
𝜕𝑥𝑗1𝜕𝑥𝑗2

‖
‖‖𝑝

≤ 𝐶𝑝,𝑛‖Δ𝑢‖𝑝 , 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛 ,

valid for 𝑢 belonging to the Schwartz space of rapidly de-
caying infinitely differentiable functions. For this purpose
one has to use the equality

𝐹 ( 𝜕2𝑢
𝜕𝑥𝑗1𝜕𝑥𝑗2

) (𝜉) =
𝜉𝑗1𝜉𝑗2
|𝜉|2 𝐹(Δ𝑢)(𝜉) , 1 ≤ 𝑗1, 𝑗2 ≤ 𝑛 ,

and the fact that the function 𝜉𝑗1𝜉𝑗2/|𝜉|2 is homogeneous
of degree zero.
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