Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Entropy criteria and stability of extreme shocks: a remark on a paper of Leger and Vasseur
HTML articles powered by AMS MathViewer

by Benjamin Texier and Kevin Zumbrun PDF
Proc. Amer. Math. Soc. 143 (2015), 749-754 Request permission

Abstract:

We show that a relative entropy condition recently shown by Leger and Vasseur to imply uniqueness and stable $L^2$ dependence on initial data of Lax $1$- or $n$-shock solutions of an $n\times n$ system of hyperbolic conservation laws with convex entropy implies Lopatinski stability in the sense of Majda. This means in particular that Leger and Vasseur’s relative entropy condition represents a considerable improvement over the standard entropy condition of decreasing shock strength and increasing entropy along forward Hugoniot curves, which, in a recent example exhibited by Barker, Freistühler and Zumbrun, was shown to fail to imply Lopatinski stability, even for systems with convex entropy. This observation bears also on the parallel question of existence, at least for small $BV$ or $H^s$ perturbations.
References
  • H. A. Bethe, On the theory of shock waves for an arbitrary equation of state [Rep. No. 545, Serial No. NDRC-B-237, Office Sci. Res. Develop., U. S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, 1942], Classic papers in shock compression science, High-press. Shock Compression Condens. Matter, Springer, New York, 1998, pp. 421–492. MR 1630345, DOI 10.1007/978-1-4612-2218-7_{1}1
  • I-Liang Chern, Stability theorem and truncation error analysis for the Glimm scheme and for a front tracking method for flows with strong discontinuities, Comm. Pure Appl. Math. 42 (1989), no. 6, 815–844. MR 1003436, DOI 10.1002/cpa.3160420606
  • Jerome J. Erpenbeck, Stability of step shocks, Phys. Fluids 5 (1962), 1181–1187. MR 155515, DOI 10.1063/1.1706503
  • B. Barker, H. Freistühler, and K. Zumbrun Convex entropy, Hopf bifurcation, and viscous and inviscid shock stability, Preprint (2012).
  • Ronald J. DiPerna, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J. 28 (1979), no. 1, 137–188. MR 523630, DOI 10.1512/iumj.1979.28.28011
  • Constantine M. Dafermos, Hyperbolic conservation laws in continuum physics, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 325, Springer-Verlag, Berlin, 2010. MR 2574377, DOI 10.1007/978-3-642-04048-1
  • Peter D. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 11, Society for Industrial and Applied Mathematics, Philadelphia, Pa., 1973. MR 0350216
  • Nicholas Leger, $L^2$ stability estimates for shock solutions of scalar conservation laws using the relative entropy method, Arch. Ration. Mech. Anal. 199 (2011), no. 3, 761–778. MR 2771666, DOI 10.1007/s00205-010-0341-7
  • Nicholas Leger and Alexis Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations, Arch. Ration. Mech. Anal. 201 (2011), no. 1, 271–302. MR 2807139, DOI 10.1007/s00205-011-0431-1
  • Marta Lewicka, $L^1$ stability of patterns of non-interacting large shock waves, Indiana Univ. Math. J. 49 (2000), no. 4, 1515–1537. MR 1836539, DOI 10.1512/iumj.2000.49.1899
  • Marta Lewicka, Well-posedness for hyperbolic systems of conservation laws with large BV data, Arch. Ration. Mech. Anal. 173 (2004), no. 3, 415–445. MR 2091511, DOI 10.1007/s00205-004-0325-6
  • Shuichi Kawashima, Systems of a hyperbolic–parabolic composite type, with applications to the equations of magnetohydrodynamics. thesis, Kyoto University (1983).
  • Shuichi Kawashima and Yasushi Shizuta, On the normal form of the symmetric hyperbolic-parabolic systems associated with the conservation laws, Tohoku Math. J. (2) 40 (1988), no. 3, 449–464. MR 957056, DOI 10.2748/tmj/1178227986
  • Andrew Majda, The stability of multidimensional shock fronts, Mem. Amer. Math. Soc. 41 (1983), no. 275, iv+95. MR 683422, DOI 10.1090/memo/0275
  • Andrew Majda, The existence of multidimensional shock fronts, Mem. Amer. Math. Soc. 43 (1983), no. 281, v+93. MR 699241, DOI 10.1090/memo/0281
  • A. Majda, Compressible fluid flow and systems of conservation laws in several space variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984. MR 748308, DOI 10.1007/978-1-4612-1116-7
  • Guy Métivier, Stability of multidimensional shocks, Advances in the theory of shock waves, Progr. Nonlinear Differential Equations Appl., vol. 47, Birkhäuser Boston, Boston, MA, 2001, pp. 25–103. MR 1842775
  • Joel Smoller, Shock waves and reaction-diffusion equations, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 258, Springer-Verlag, New York, 1994. MR 1301779, DOI 10.1007/978-1-4612-0873-0
  • Hermann Weyl, Shock waves in arbitrary fluids, Comm. Pure Appl. Math. 2 (1949), 103–122. MR 34677, DOI 10.1002/cpa.3160020201
  • K. Zumbrun and D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts, Indiana Univ. Math. J. 48 (1999), no. 3, 937–992. MR 1736972, DOI 10.1512/iumj.1999.48.1765
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2010): 35L65, 35L67, 35B35
  • Retrieve articles in all journals with MSC (2010): 35L65, 35L67, 35B35
Additional Information
  • Benjamin Texier
  • Affiliation: Université Paris-Diderot, Institut de Mathématiques de Jussieu - Paris Rive Gauche, UMR CNRS 7586, 75252 Paris Cedex 05, France–and–Ecole Normale Supérieure, Département de Mathématiques et Applications, UMR CNRS 8553, 75005 Paris, France
  • Email: texier@math.jussieu.fr
  • Kevin Zumbrun
  • Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
  • MR Author ID: 330192
  • Email: kzumbrun@indiana.edu
  • Received by editor(s): May 20, 2013
  • Published electronically: October 10, 2014
  • Additional Notes: The first author’s research was partially supported by the Project “Instabilities in Hydrodynamics” funded by the Mairie de Paris (under the “Emergences” program) and the Fondation Sciences Mathématiques de Paris.
    The second author was partially supported under NSF grants no. DMS-0300487 and DMS-0801745
  • Communicated by: Walter Craig
  • © Copyright 2014 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 143 (2015), 749-754
  • MSC (2010): Primary 35L65, 35L67, 35B35
  • DOI: https://doi.org/10.1090/S0002-9939-2014-12426-9
  • MathSciNet review: 3283661