
ON REARRANGEMENTS OF SERIES

H. M. SENGUPTA

In an interesting paper published in the Bulletin of the American

Mathematical Society, R. P. Agnew1 considers some questions on

rearrangement of conditionally convergent series.

He considers the metric space E in which a point x is a permuta-

tion Xi, *»,•••) of the positive integers and in which the distance

p(x, y) between two points **= x2, #«,•••) and y= (yi, y2, y%, • • •)

of E is given by the Fr6chet formula

"   1      1 xn - y„ I

Agnew proves that the space £ is of the second category at each

of its points.

He also considers the following problem: Let C\ + d + Cs-\- • • - be

a conditionally convergent series of real terms. Denote C„ by C(«).

To each xG.E there corresponds a rearrangement 2~ln-i C(xn) of the

series £C(n) or £C„ and also to each rearrangement of the series

corresponds a point i££. Thus the ways in which the series may be

rearranged form a set which has the potency of E. It is well known

that x(E.E exists for which £„ C(xn) converges to any preassigned

number, diverges to + » or to or oscillates with prescribed

upper and lower limits. The set A of xE:E for which C(xn)

converges is therefore a proper subset of E. Professor Agnew considers

the nature of the set A and proves that it is of the first category so

that the complementary set E—A is of the second category. In point

of fact he proves more than that. He shows that the set of points

xCE for which 2~ln-i C(x») has unilaterally bounded partial sums is

of the first category. His first theorem runs as follows:

For each except those belonging to a set of the first category,

N N

lim inf £ C(xn) = — co,       lim sup £ C(xn) = + °o.
JV-»«o      n_l JT-»» n-1

It is possible to add something more to the above in regard to the

nature of the set A. In fact we can prove the following theorem:
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Theorem 1. For each x£E, except those of a set 73 (Fr in E) that is

an outer-limiting set of sets closed in E, we have

if if

lim inf £ C(xn) = — oo,       lim sup £ C(z„) = 4- ».
JV->»      n_l N->*> n-1

Combining the above with the result given in Agnew's paper, we

may assert that the set of points x for which

If it

lirn inf £ C(xn) = — oo    and    lim sup £ C(xn) = 4- oo
N-*<o      n—1 N->*> „_1

is the inner limiting set of a sequence of everywhere dense sets open

in E.
Proof. We require the following ideas for the proof of our theorem.

Consider the series T^T-i C(xn). Let Sj, s2, Si, • • •, Sir, " * • . where

sn= £fli C(xn), be the partial sums.

Let us denote the maximum of the numbers (si, s», • • • , sif) by

Uif. Then si, i/2, E/», • • • is a monotone nondecreasing sequence of

real numbers, and lim^-.«, Un exists either as a finite number or as

+ oo. We write lim^..., Un as lim.y_0O upper bound £Jli C(xn).

In a similar manner if denotes min (si, 52, ■ • • , ss), then

S%, «2, Ma, • • • is a monotone nonincreasing sequence of real numbers

and limAT.«, un exists either as a finite number or as — oo. We denote

limjv^oo Un by the symbol limjr..«, lower bound Yn-i £(*«)•

Now, let A>0 be large at pleasure. We define 73» to be the set of

points of E for which limar..«, upper bound 2~l»-i C(xn)—h.

Now let £i, £2, • • • be a convergent sequence of points of E all

belonging to 73„. Let their limit point £ also belong to E. We shall

prove that £ also belongs to 73*.

Let Zn=-(x?\ 4n\ xf, • • • ) and £=(xu x2, xs, ■ • • ). The number

complexes (ar?0, x??, x3n), • • • ) for n — 1, 2, 3, • • • and also the

complex (xi, x2, xit • • • ) are different permutations of the positive

integers.

If now £ does not belong to 73* we must have

N

lim upper bound £ C(xr) > h.
N-f" n-1

So, for sufficiently large 7Y, say N=M' where M' is some positive

integer depending on £ and h, we must have Un>h.

In particular, therefore, Uw>h. But Uw is the maximum of

(si, ft, 5», • • • , iAf). so there is a positive integer M (1 = M^M')

such that SM>h, that is, there is a positive integer J17 for which

Sm = C(*0 + C(*2) + • • • + C(xm) > h.
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We may now take a sphere of sufficiently small radius to ensure that

the first M elements of all points of E that lie in the interior of the

sphere are identical with those of £ in value and in order. So for all

these points the corresponding rearranged series are'such that the

Mth partial sum of each of them equals Sm = C(xi) + C(x2) 4- • •

+ C(xm) and so exceeds h in value.

Now, since lim £„ = £, for all sufficiently large n, say ti — P where P

is a suitable positive integer, £„ lies within the sphere referred to

above. So

£C(xT) = C(*i) + C(x2) +■•■+ C(xM) > k
r-l

for »=P, P+l, P4-2, • • • . Therefore

tr      ,.

lim upper bound £ C(x" ) > h (» = P, P + 1, • . . ),
N-"> r-l

that is, £p, i-p+i, lp+2, • • • all belong to E—Bh which is contrary to the
hypothesis. So £ belongs to 5», that is, the set 75„ is closed in E.

In a like manner, we may prove that if B-h stands for the set of

points of E for which

N

lim lower bound £ C( xr) St — h
N->» r-l

and if {fi, f», £»,•••} is a convergent sequence of points of E all

belonging to 73_* with f as the limit which itself belongs to E, the
f G-B-». So,      is closed in £.

It follows therefore that for any positive integer n, the set 73„+7i_B

is closed in E, that is, the set of points of E, for which

tr

lim upper bound £ C( xr) g »
N-ko r-l

or

lim lower bound £ C(*v) = — »
W-«> r-l

is closed in E.
The set 5 referred to above is, therefore, given by

00

B = £ (7i„ + B-n).
n-1

So, 73 is a set F. in £, that is, the outer limiting set of a sequence of

sets closed in E.
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It follows that the set of points for which

N N

lim inf £ C(xn) = — °°    and   lim sup 2~l'C(xn) = 4- 00
n-l n-l

is Gt in E.
We next propose to derive some simple properties about the power

of E.

Theorem 2. The set E has the power c of the continuum.

Proof. Let p be the power of the set E. Let us associate the

point x = (xi, Xi, Xi, • • • ) of the set E to the irrational number a which

is the value of the simple continued fraction

1      1 1

Xl + x2 + xt + • • • .

Thus to each point x(E.E there corresponds an irrational number a in

0<a<l and to two distinct points x and y of E correspond two

distinct irrational numbers in the above range. Thus the set E is

equivalent to a proper subset of the real numbers. Therefore

p £ C.

On the other hand, to any real number ß (0<ß<l) there cor-

responds a rearrangement of the conditionally convergent series

£T«i C„ such that the rearranged series converges to ß. In fact there

are an infinity of such rearrangements with the sum ß. So to any real

number correspond an infinity of distinct points of E. Again to any

other real number y, there correspond an infinity of other distinct

points of E, each of which is different from any of those corresponding

to ß. Thus the set of real numbers is equivalent to a proper subset

of the aggregate of points of E. Therefore p=C. Combining these

two, we have p=c.

Theorem 3. Every point of the metric space E is of degree c (power of

the continuum) in E*

Proof. Take any point x = (*i, x2, xit • • • ) of E. Then

C(xi) + C(xt) + C(*,) + •;•

is a rearrangement of the given conditionally convergent series. Let

7Y be a positive integer. Let 0<a<l and let

2 The proof of Theorem 3 is due to the referee. It may be remarked that a proof

of the above modelled on the plan of proof of Theorem 2 may also be easily given.
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a = .OLiaictzcti • • •

be the dyadic expansion of a which may terminate with zeros but not

with ones.

Let *ia) =xn (« = 1, 2, 3, • • • , 7Y+1) and if ap=0, let

(«0 («)
Xn+2p = Xff+tp, Xtf+ip+l = Xn+tp+1

and if ap = 1, let

<«> («)
%N+tp — XN+ip+u      Xtr+tp+i = xtr+iP-

Then to different numbers a correspond different points

(a) (a)       (a) (a)

*     = (*i , x»  ,*$,••• ).

All points x(a) lie within the sphere with center * and radius 2~s.

And since lim C(xn) = 0, the series

C(x[")) + C(.xiia))+C(x(t")) + -"

has, for each or, exactly the same limits of oscillation as the series

£c(*»).
This proves that the points of E that lie within the sphere S(x, 2~N)

has the power of the continuum.

It proves more. It easily leads to the theorem:

Theorem 4. Every point of E is the limit point of a set of points of E of

power c at which the rearrangements of the conditionally convergent series

behave in any prescribed manner.

Proof. Take any point x = (xu x2, x3, • • • ). Let / and L be any two

real numbers, — » and 4-00 not excepted, such that — <x> gl=L

^ 4- 00 • In a sphere with x as center and 2~s as radius there exists a

point X = (aci, X2, • ■ ■ , xif+u Xff+i, XN+t, • • • ) at which the rear-

ranged series has / and L as its limits of oscillation. Again, by the

above, in a sufficiently small sphere with X as center lying entirely

within the first sphere, an infinite set of points of the power C exist at

which the rearranged series has the same limits of oscillation / and L.

Thus in every neighbourhood of x, there exists a set of points of the

power of the continuum, at which the rearranged series has any pre-

scribed limits of oscillation.
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