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A sequence [sn\ is said to be summable to S by the Hausdorff

method T~[in, if lim„.M t„ = S, where {/„} is given by

n

(1) A-/o = Z (-WCn.kh = tinAns„ (« = 0, 1, 2, • • • ).

Hausdorff methods have been extensively investigated by F. Haus-

dorff and others [l, 3, S].1

A method of summation A is said to be stronger than another

method B if every sequence summed by B is also summed by A.

Two methods of summation are consistent if any sequence which can

be summed by both methods has the same limit assigned to it by

both of them. I shall say that A contains B if A is stronger than B and

also consistent with B. A method containing ordinary convergence is

called regular. F. Hausdorff proved that any two regular Hausdorff

methods are consistent [3]. This enabled R. P. Agnew to introduce

the "collective Hausdorff method" § by the definition: {sn} is sum-

mable § to the sum S if {s„} is summable to 5 by any regular Haus-

dorff method [l]. He raised at the same time the question whether

there is a matrix method of summation containing §. I shall now

show that the answer is in the negative. More precisely I prove the

following:

Theorem. There is no matrix A = (a(m, »)) such that

(a) tm= Z"-o a(m, n)sn (m = 0, 1, 2, • • • ) converges whenever {s„}

is summable § and

(ß) if {sn} is summed to S by     then tm—>S as m—* » ?

To start with I list a few special sequences summed by §.

(a) Since ordinary convergence is the Hausdorff method C~l, §

sums every convergent sequence to its ordinary limit. In other words,

§ is regular.

(b) The sequence s„ = ( —c)B (Ol) is summed to 0 by a suitable

Euler method Ep~p-n (/>>1).

(c) The sequence sn = CB,t is summed to 0 by Mercer's method

»)/£(»+!)•
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1 Numbers in brackets refer to the references cited at the end of the paper.

s To avoid double subscripts I write a(m, n) instead of the usual aw
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Euler methods have been extensively studied by Knopp [4]. The

special result stated as (b) can easily be verified byt he use of (1).

Mercer's methods are investigated in [S]; again (c) can be verified

directly by means of (1).

Suppose now that A is a matrix satisfying the conditions (a) and

(/3) of the theorem. By (a) this matrix defines a regular method of

summation and hence, by a well known theorem [6],

(2) a(m, ») —> 0 as i» —> eo (» = 0, 1, • • • )

and

E a(m< ») —> 1  as »»—>«>.
n—0

By (b) and condition (a) of the theorem

■0

(3) E I       ») I c" < oo
n=0

for every c, since 2~la(mi w)2" is an integral function.

By (3) there is an integer n(k) such that

(4) E I «(*, 0 I 4' < 2-K
&«(»)

I show next that there is a matrix B satisfying the following con-

ditions :

(i) b(k, I) =0 except perhaps for 2 =/<»(£).

(ii) Every sequence summed by A and satisfying | j„| ^4B for all

large n is summed to the same sum by B.

It is an immediate consequence of (2) and (4) that the matrix

B = (b(k, I)) with

b(k, I) = a(k, f) (for 2 = / < »(£))

= 0 (otherwise)

satisfies the requirements (i) and (ii). In particular B defines a regular

method of summation and therefore

(5) £ Hk, i) = E b(k, /) -> l
(-0 {-2

as k—> *.

If we write

A"S0 = On.
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Z *(*, Q*l = Z <k, A)<r.,

then

sn = AVo,

(6) b(k,l) = (-1)'Z«(*. Ä)CM,

(7) c(£, A) = (-1)*ZK*. OCi.».

By condition (i) imposed on B

(8) c(k, h) = 0 (Ä = »(*)).

By condition (ii), (c), and (7)

(9) c(U)->0 as k->°°.

I show now that for each k>K, where K is a sufficiently large num-

ber, there is at least one index A such that

(10) I c(k, A) I > 3"*.

For otherwise, by (6),

I b(k, I) I = Z Cn.i3-h = 3-'f 1 - 4V  = 3-2-'-1
AäJ \ 3/

and so

' Z 0 «o 3

= E3-2-'"1 = —
i=2 4

in contradiction to (5).

By (10) we can choose k0>K, and h0 such that \c(k0, A0)| >3_V

Because of (8) the element in the A0th row of the matrix (c(k, A)) are 0

for h = m0, say. Because of (9) we can find an index ki>K such that

(ii) Z |«(*V*)|3*<4-

Also, by (10), there is an index hi such that \c(Jku hi)\ >3-*1. By

(11) we must have hi—m0. Again c(ki, A) =0 for A = wn, say. Proceed-

ing in this way we find successively k2, h2, m2, k3, h3, mt, • • • such

that

(12) Z   \c(k,; A) I 3* <\,

(13) I c(kit hi) I > 3"\
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(14) Hi = my-,,

(15) c(k,; h) = 0 (A = my).

There is always a least possible choice of my, but we may choose a

larger number, if desired, so that there is no loss of generality in

supposing

Z 1/»»/ < 00

which implies, by (14),

(16) £lAi<°°.

We define now a sequence {s„} by

(17) A"s0 = o-„ = 0 (n 5^ A,-),

(18) D b(k,; l)st = D c(*y, h)*h = (-1)'' -    (j = 0, 1, 2, • • • ).
2 h 2

By (17), (14), and (15),

(-1)' v = £ c<** Ä>* = £ c(** Ä<)T<      Ci = 0, 1, 2, • • • ),
2        * <Sy

where t< is written for a with the index hi. These equations can be

solved successively for t0, T\, t«, • • • and it is easily proved by means

of (12) and (13) that |t,| <3\ Together with (17) this shows that

I crAI <3* and, therefore,

I j» I = I AVo I =■ Z Cn.h<rh < £ CU3* = 4».

It is obvious from (18) that {s„} is not summed by 73, and so, by

condition (ii) imposed on 73, {sn} is not summed by A. On the other

hand it follows from (1) and (17) that {sn\ is summed to 0 by any

Hausdorff method for which

(19) un = 0 (» = ho, hh fa, • • • ).

To complete the proof of the theorem it is necessary only to show

that there is a regular Hausdorff method satisfying (19).

By a well known theorem [3 ] the method T~p,n is regular if

/i„ = T(n) = j t»d<p(t),

where <b(f) is of bounded variation in (0, 1),

Mo - <K1) ~ «(0) = 1,
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and

*(0) = <p(0+).

It is an easy consequence of Mellin's formula that the function*

Tr(z) = (1 + 2)-*II
;_0 hj + z

can be written in the form 7\(z) = Jlt'dq>(t) where <p(t) satisfies all the

conditions just stated (details of the proof of this statement can be

found in [2]). This proves the existence of the regular method

7V~/x„ = 7\(ti) satisfying (19) and completes the proof of the theorem.

This proof makes essential use of "unreasonable" Hausdorff meth-

ods for which the moment function T(z) has zeros in the right half-

plane. It remains an open problem whether there is a matrix method

containing all reasonable Hausdorff methods, for which T(z)?±0 in

9tz = 0.
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The infinite product converges because of (16).


