A THEOREM ON THE ACCESSIBILITY OF BOUNDARY PARTS OF AN OPEN POINT SET

EBERHARD HOPF

Let Ω be a bounded open set in ordinary *n*-space. Denote by p a point of that space. A closed subset of the boundary of Ω is called accessible from within Ω if Ω contains a semi-open Jordan curve p(t), $0 \le t < \infty$, whose points of accumulation, for $t \to \infty$, precisely constitute that boundary part. In this note we prove the following theorem.

THEOREM 1. If Ω is a bounded open set and if Ω' is a connected open subset Ω' of Ω whose boundary has at least a point in common with the boundary of Ω , then the set C of all of these common boundary points contains a set accessible from within Ω . If C is the sum of two disjoint closed sets then each of these sets contains a set accessible from within Ω .

The theorem was established and proved in order to bridge a gap in the proof of a classical theorem on surfaces z(x, y) of nonpositive Gaussian curvature. Theorem 1 might, however, be of interest in other respects. The completed proof of the differential geometric theorem is given in the subsequent paper. The special case of Theorem 1 needed for the completion is that where the boundaries of the open set Ω and of the open and connected sets $\Omega' \subset \Omega$ have only one or two points in common. None of these points need, of course, be accessible from Ω' . Theorem 1, however, ascertains that each of these points is accessible from Ω .

The conclusion of the theorem remains valid if the open set $\Omega' \subset \Omega$, instead of being connected, is merely supposed to be connected to the vicinity of C. We call an open set Ω' connected to the vicinity of a closed set S if there is a neighborhood N^* of S (open set containing S) with the following property. For every neighborhood N of S there is a Jordan arc whose interior lies in Ω' and whose end points lie in N and on the boundary of N^* , respectively. The generalized Theorem 2 is found to be more easily proved than Theorem 1. It is convenient to extend the notion of accessibility of a closed set S from an open set Ω to arbitrary closed sets (not necessarily parts of the boundary of Ω).

THEOREM 2. Let Ω and $\Omega' \subset \Omega$ be two bounded open sets and denote by S a closed set which contains all points common to the boundaries of Ω

Received by the editors October 1, 1948.

¹ Throughout this note the notion of connectedness is meant in the sense of arcwise connectedness.

and Ω' . Let Ω' be connected to the vicinity of S. Then S contains a set accessible from within Ω . If S splits into two disjoint closed sets the same is true for each part.

PROOF OF THEOREM 2. Recall the set N^* in the definition of vicinity-connectedness. Let N_1 and N_2 be two arbitrary neighborhoods of S subject to the conditions

(1)
$$N_1 \subset N^*$$
, closure of $N_2 \subset N_1$.

Let

$$(2) N_1 \Omega = \sum C_r$$

be the decomposition of the open set N_1 into disjoint connected components. The open sets

$$C_n' = C_n N_2 \Omega'$$

are disjoint and satisfy, according as $N_2 \subset N_1$ and $\Omega' \subset \Omega$, the relation

$$(4) N_2\Omega' = \sum C_{r}'.$$

 N_2 contains S and S in turn contains, according to hypothesis, boundary points of Ω' . The open set N_2 contains, therefore, points of Ω' and the sets C' cannot all be empty.

We first show that a boundary point of C_n is either a boundary point of Ω or a boundary point of N_1 . In fact, a boundary point p of C_n is a point of accumulation of N_1 . If p is not in N_1 it must lie on the boundary of N_1 . Suppose that $p \subset N_1$. As a boundary point of the open set C_n , p cannot belong to C_n . Furthermore, p cannot belong to any other C_m . Otherwise a whole neighborhood of p would belong to C_m and $C_n C_m$ would not be empty since the neighborhood contains points of C_n . p therefore is not in $\sum C_n = N_1 \Omega$ and, as $p \subset N_1$, not in Ω . On the other hand, every neighborhood of p contains points of C_n , and $C_n \subset \Omega$. p must be a boundary point of Ω .

The boundary of C_n and the boundary of the subset C'_n of C_n cannot have common points except on S. In fact, such a point must be a boundary point of Ω since, according as $C'_n \subset N_2$ and as the second inequality (1) holds, it cannot lie on the boundary of N_1 . It must also be a boundary point of Ω' since it is a point of accumulation for $C'_n \subset \Omega' \subset \Omega$. According to the hypothesis, a common boundary point of Ω and Ω' can only lie on S.

The main point of the proof is to show that among the sets C_n' there is at least one that is connected to the vicinity of S. To this purpose we first consider the "special" C_n' , that is, those C_n' which have a

boundary point, say p_n , on the boundary of N_2 . We prove that the special C_n' must be finite in number. If there were infinitely many, the corresponding points p_n would have a point accumulation p^* on the boundary of N_2 . Every sufficiently small neighborhood V of p^* would, according to the second inequality (1), contain no points of the boundary of N_1 . We can always assume V to be connected. V would contain points p_n , p_m belonging to two disjoint open sets C_n , C_m and, therefore, all the points of a suitable Jordan arc joining them. This arc, and therefore V, must contain a boundary point of C_n . This point is either a boundary point of Ω or of N_1 . The latter case cannot occur in V. Consequently, every neighborhood of p^* contains a boundary point of Ω , and, therefore, p^* is itself a boundary point of Ω . From $p_n \subset \Omega'$ and $\Omega' \subset \Omega$ it is obvious that p^* is also a boundary point of Ω' . This is a contradiction, since a common boundary point of Ω and Ω' must, according to the hypothesis, lie on $S \subset N_2$ and, therefore, cannot lie on the boundary of N_2 . Hence the special C_n must be finite in number. Now we make use of the hypothesis that the open set Ω' is connected to the vicinity of S. For any neighborhood N of S,

$$N \subset N_2$$

there is a Jordan arc leading from some point of the boundary of N^* entirely through Ω' to some point of N. On this arc there is, according to (1), a last point of entry into N_2 . This is the initial point of a subarc which thus joins some boundary point of N_2 entirely through $N_2\Omega' = \sum C'_*$ to some point of N. Since the C_* ($C'_* \subset C_*$) are mutually disconnected, the subarc must lie wholly in one of the C'_* . If we let N run through a sequence of neighborhoods of S closing down on S, and if we attach an arc and a subarc to each of these N, we see that one of the C'_* , say C'_* , must contain infinitely many of these subarcs. C'_* is evidently connected to the vicinity of S.

The result obtained is this. Given any two neighborhoods N_1N_2 of S satisfying (1), there exist two open sets Ω_1 and $\Omega'_1 \subset \Omega_1$,

$$\Omega_1 \subset \Omega$$
, $\Omega_1 \subset N_1$, $\Omega_1' \subset N_2$,

with the following properties. The common points of the boundaries of Ω_1 and Ω'_1 lie on S. Ω_1 is connected. Ω'_1 is connected to the vicinity of S.² The three sets Ω_1 , Ω'_1 , and S thus have precisely the properties

² The neighborhood from whose boundary the arcs are drawn is N_2 . In the case of Ω' it was N^* , which could, of course, be replaced by N_1 .

supposed about Ω , Ω' , and S with the important additional information that Ω_1 is connected.

We now start from a sequence of neighborhoods N_1 , N_2 , N_3 , \cdots of S closing down on S. We choose them such that

(closure of
$$N_{n+1}$$
) $\subset N_n$.

In the same way as before, starting this time from Ω_1 and Ω'_1 , we can construct two open sets Ω_2 and $\Omega'_2 \subset \Omega_2$.

$$\Omega_2 \subset \Omega_1, \quad \Omega_2 \subset N_2, \quad \Omega_2' \subset N_3,$$

such that Ω_2 , Ω'_2 , and S have the same properties as Ω_1 , Ω'_1 , and S.* Continuing in this manner we obtain a sequence of connected open sets with the properties

$$\Omega \supset \Omega_1 \supset \Omega_2 \supset \Omega_3 \supset \cdots, \Omega_n \subset N_n$$
.

The Ω_n' are no longer needed. In each Ω_n we choose a point q_n . As Ω_n is connected, q_n and q_{n+1} can be joined by an arc $\alpha_n \subset \Omega_n \subset N_n$. The curve $\alpha_1 + \alpha_2 + \alpha_3 + \cdots$ has the desired properties, except perhaps simplicity. Every point of accumulation, as $t \to \infty$, lies in the common part of the N_n , which is S since S is closed. By the well known procedure of "omitting loops" we obtain a simple Jordan curve with the same properties.

The additional concluding statement of Theorem 1 is proved in the following way. Let $C = C_1 + C_2$, where the parts are closed and disjoint. There exist neighborhoods N_1 of C_1 and N_2 of C_2 without common points. The boundaries of the sets $\Omega + N_2$ and Ω' obviously have precisely C_1 as their common part. According to Theorem 1, C_1 is therefore accessible from $\Omega + N_2$. The Jordan curve in $\Omega + N_2$ that converges towards C_1 must, from a certain point on, lie in N_1 and thus outside of N_2 , in other words in Ω . C_1 is, therefore, accessible from Ω .

New York University

 $^{^3}$ N^{\sharp} is the neighborhood from whose boundary the arcs are drawn through $\Omega_{\!2}$ to the vicinity of S.