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Introduction. It has been shown in a previous paper [3]1 that every

algebra A with radical R, such that A/R is separable, is a homo-

morphic image of a certain maximal algebra which is determined to

within an isomorphism by A/R, the A/R-modu\e (two-sided) R/R1,

and the index of nilpotency of R. Furthermore, some indication was

given of how the structure of maximal algebras can be determined in

simple cases.

Here, we wish to give a further illustration by describing a rather

wide class of maximal and primary algebras whose structure will be

shown to resemble that of crossed products, in certain respects. In

fact, we shall impose a certain normality condition and then trace the

consequences of a few simple facts of the noncommutative Galois

theory.

An algebra B over the field F, with radical R, is called primary if

it has an identity element and if B/R is simple. As is well known,' B

is then isomorphic with a Kronecker product FmXC, where Fm de-

notes the full matrix algebra of degree m over F, and where C is

completely primary, in the sense that it has an identity element and

that the quotient of C by its radical is a division algebra over F. We

are concerned with primary algebras B for which this division algebra

(which is determined to within an isomorphism by 73) is normal over

F, in the sense of the noncommutative Galois theory.* This will be

the case if and only if the center Z of B/R is a separable normal

extension field of F and every automorphism of Z over F is induced

by an automorphism of B/R.

A completely primary algebra C with radical 5 will henceforth be

called quasinormal if C/S is normal over F. If <b is an isomorphism of

FmXC onto B then <f> maps the radical FmXS onto the radical R of

B, and B/R is isomorphic with FmXC/S. Therefore, if C is quasi-

normal over F, then B/JZ is automatically separable over F. By [3],

B has then a maximal related extension B* which is evidently

primary. Moreover, it is easily seen that B***FmXC*, where C* is

the maximal related extension of C, and is quasinormal over F.

Finally, the naturäl extension to B* of a homomorphism of C* onto

C is a homomorphism of B* onto 73. From these facts it is evident

Received by the editors October 11, 1948.
1 Numbers in brackets refer to the bibliography at the end of the paper.

1 See, for instance, [2, chap. 2, §9].

'See [l]and [5].
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that, without loss of generality, we may confine our attention to

quasinormal algebras.

1. Representation in the radical. Let B be quasinormal over F,

and let R be its radical. By Wedderburn's theorem and the quasi-

normality we have B=A-\-R, where A is a normal division algebra

over F. Moreover, it is easy to see that the identity element of A

coincides with the identity element of B. Hence, if R is regarded in

the natural fashion as a two-sided A-module, the identity element of A

acts as the identity operator on either side.

As in [3, §4], we make a direct decomposition of the A-module R

in the form R = T-\-R2. The submodule T (which is isomorphic with

the A-module R/R2) is decomposed further into a direct sum of (two-

sided) simple submodules. Now it is easily seen that every simple

A-module over Fis an operator homomorphic image of the Kronecker

product A XA with respect to F, regarded in the natural fashion as a

two-sided A-module. By applying either the noncommutative Galois

theory, or the classical representation theory for simple algebras in

conjunction with the theory of field composites (for ZXZ, where Z

is the center of A), we conclude that the simple components of the

.4-module AXA are of dimension 1 over A* It follows that every

simple A-module is of dimension 1 over A, and if u is a generator we

have u a=a{a} u, for every a £.4, where a is an automorphism of

A over F. Two such simple modules are operator isomorphic if and

only if the corresponding automorphisms differ only by an inner

automorphism of A.

It follows that there is a set of automorphisms 01, • • • , a, (not

necessarily distinct) of A over F which are determined uniquely up

to inner automorphisms,8 and a corresponding decomposition, T

= A-Ui+ ■ - ■ -\-A-u, of T into simple submodules, such that, for

each index i and every aEA, w< a=fr,{a} •«,-.

2. The standard maximal algebras. Let B be as in §1. We con-

struct a maximal related extension of B from A and T by the process

described in [3, §4]. If B is already maximal the resulting "standard

algebra" will be isomorphic with B.

The radical of the algebra to be constructed is the linearly direct

sum of the "powers" Tlk\ k = l, • • • , n, where n is the index of nil-

4 A proof of this, in a terminology close to the present one, will be found in [4,

§4].
5 This because r^ie simple components of a semisimple module are unique to within

an automorphism of the whole module, as follows, for instance, from the evident fact

that they are isomorphic images of the factors in a composition series.
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potency of R. We have T<1) = T, and generally T(k+1) is the Kronecker

product Tw X T, which means that in the elementary products u X»,

where w£ jw and »£7", we identify uaXv with uXav for every

a£.4, and define the module operations such that a- (uXv) =a«Xtf

and (uXv)-a = uXva. There is a natural multiplication (Tw, Tw)

-►r<*+'\ for k+l^n, and (T», r«)-*(0) for k+l>n, by means of
which the multiplication in the standard algebra is defined.

It is easy to see that the partial products A-UiXA-Uj are simple

A-modules and may be represented in the form A-u, with u a

= <Ti<r3 {a} -u, for every a £.4. From this and §4 of [3], it can be seen

immediately that the standard algebra may be described as follows:

Its elements are polynomials of total degree not greater than a,

with coefficients in A, in the freely noncommuting "variables"

«!,-••, u,. The elements are multiplied like ordinary polynomials,

subject to the commutation rules Uia=ffi{a}ui, and all the terms of

degree greater than n are omitted. We denote this algebra by

A(ui, •••,«,)„• Our result is the following:

Theorem. Every quasinormal maximal algebra B with radical R is

isomorphic with a standard "polynomial algebra" B/R(ui, • • • , u,)„,

where s is the number of simple components of the B/R-module R/R2,

and n is the index of nilpotency of R. To each w,- there belongs an auto-

morphism ffi of B/R over F such that «<a=(r<{a}w,- for every aQB/R.

These automorphisms are determined by B to within inner auto-

morphisms of B/R. Two standard algebras with the same coefficient

rings B/R are isomorphic if and only if their autmorphisms a, and r,- can

be so indexed that, for each i, o-.ri"1 is an inner automorphism of B/R.

As in [3, §6], we obtain the following corollary:

Corollary. If B is quasinormal and if R/R2 is a simple B/R-

module, then B is maximal and is isomorphic with a standard algebra

B/R(u,)n. Two such algebras are isomorphic if and only if the cor-

responding automorphisms differ only by an inner automorphism of

B/R.

In general, every primary algebra satisfying the normality con-

dition laid down in the introduction is a homomorphic image of

an algebra of the type FmXA(ui, • • • , «,)„, the kernel of the

homomorphism consisting of "polynomials" in which the "constant"

terms and the terms of degree 1 in the w.'s are absent.
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ON THE RADICAL OF A LIE ALGEBRA

harish-chandra

Let 8 be a Lie algebra over a field K of characteristic zero. For any

X&i. we denote, as usual, the linear mapping Y—*[X, Y] of 8 into it-

self by ad X. Let V be the radical of 8. Consider the set 9t consisting of

all TYGT such that ad N is nilpotent. It was shown in a recent paper1

that 9t is the unique maximal nilpotent ideal2 of 8. Further if D is a

derivation of T then DTCR.

For any X, Y, Z& put B(X, Y) =sp(zd X ad 7) and T(X, Y, Z)
= s/>(ad [X, Y] adZ). Then 73(X, Y) is a symmetric bilinear form on 8

while T(X, Y, Z) is a skewsymmetric trilinear form. It is easily verified

that they are both invariant under all derivations of 8, that is,

B(DX, Y) 4- B(X, DY) = 0,

T(DX, Y, Z) -f T(X, DY, Z) 4- T(X, Y, DZ) = 0

for any derivation D and X, Y, Z£8.

An ideal 21? in 8 is called characteristic if DSfJcCSft for every deriva-

tion D of 8. Our first theorem may now be stated as follows:

Theorem 1. An element X of 8 belongs to the radical T if and only

if T(X, Y, Z) =0/or all Y, ZG8.3

As an immediate corollary we get the following:

Received by the editors October 4, 1948 and, in revised form, November 11, 1948.

1 Ann. of Math. vol. 50 (1949) p. 68.

* My attention has been drawn to a paper by Malcev (Bull. Acad. Sei. URSS.

vol. 9 (1945) pp. 329-356) where it is shown that 9t is an ideal.

• Since T(X, Y,Z)=- T(Z, Y, X) this condition is clearly equivalent to B(X, Y)

=0 for all F£8' = [8, 8]. Professor Jacobson has kindly brought it to my notice that

this theorem is contained in Cartan's thesis p. 109.


