
LOCAL CONNECTION IN LOCALLY COMPACT SPACES

M. H. A. NEWMAN

It was proved by Hurewicz1 that a compact space which is both

LC1 and lc" is LCn. In the present paper the corresponding result for

locally compact spaces is proved, (a) for uniform local connection,

and (b) for relative local connection.2 The extension of Hurewicz's

theorem to locally compact spaces is included in (b). The main diffi-

culty in extending Hurewicz's methods is that his "Satz 6," on the

passage from e-homotopy to true homotopy, cannot be carried over

to locally compact spaces without substantial modification, even when

uniform local connection is assumed. To overcome this a stronger

form of the lcp and LO conditions is used, namely (for lcp), the

existence of a function f (5, x) such that, given a compact set F in

the neighbourhood U(x, f (5, x)) of any point x, there is a compact

subset F' of U(x, 8) such that every g-cycle in F bounds in F', for

Ogqgp; and analogously for LO. It is shown that these are equiva-

lent to the ordinary lcp and LO properties in locally compact

(metric) spaces.

1. Definitions. It is assumed once for all that the containing space

X is locally compact, and has metric p.* Homologies are relative to

integral coefficients; cycles in X are Vietoris-cycles (but finite cycles

are chains on some simplicial complex with vertices in X). The state-

ment that T bounds in E means that T bounds in a compact subset of

E. p denotes an integer not less than 0.

The letter F, with various suffixes, always denotes a compact set.

If G is open, the statement "FQG with a margin a" means that a>0,

and Cl(f/(P, a)) is compact and contained in G* The existence of

margins for every such F and G is ensured by the local compact-

ness of X.

A set Ex is acp rel. E2 ("acyclic up to p rel. E2") if every g-cycle in

Ei bounds in E2, for Ogqgp. Ei is as" rel. E2 ("aspherical up to p rel.

E2") if every mapping of the g-sphere S" into Ei is null-homotopic in

E2, for Ogqgp. The set Ei is strongly acp (or strongly asp) rel. E2 if,

given any F in Ei there is an F' in E2 such that F is acp (or asp) rel. F'.

Presented to the Society, July 19, 1948; received by the editors October 25, 1948.

1 Hurewicz [4], denoted hereafter by H. Numbers in brackets refer to the bibliog-

raphy at the end of the paper.

* Problem 4 of Eilenberg and Wilder [3] is thereby settled affirmatively.

' Use is made at one point (Theorem 1, (B)) of a local separability condition.

4 Cl. (X) denotes the closure of X.
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Among the various definition of lcp and ulcp that are in the field

we choose those which impose the heaviest conditions on the bounding

cycles, and therefore the lightest conditions on the space. If EiQEt

CJ, Ei is lcp rel. E% if there is a positive function v (x, 5) such that

EiU(x, 7}(x, «)) is acp rel. EiU(x, e) for all points x of £2 and any

positive e;5 and X is (absolutely) lcp if it is lcp rel. X. The space X is

ulcp if there is a positive function 17(e) such that for all points x of

X, U(x, r](e)) is acp rel. U(x, e).

2. Homology. We consider chain-realisations of (abstract simplicial)

complexes, in the sense of Lefschetz [7] and Begle [l]. The complexes

realised all have their vertices in X, and every realisation / of a com-

plex K is to satisfy f(<r°) =<r°, for all vertices <r° of K. If C is a finite

chain on a complex in X, a realisation of C means a chain t(C), where

/ is a realisation of the carrier complex ||C||.*

If X is connected, a realisation of any complex can, by an arbi-

trarily small displacement of the vertices, be so modified that acci-

dental clashes are avoided, that is, any common vertex of ||/(<r)|| and

||/(<r')|| belongs to some ||/(<r")||, where a" is a common sub-cell of

a and <r'. It will be assumed that this is always arranged. There is,

then, for any vertex x of ||*(CP)|

sion in ||CP||, such that x£||/(<r)

of x.

, a unique simplex <r of lowest dimen-

|. This a may be called the Cp-carrier

Theorem 1. If X is lcp and a>0, and if F is a compact subset of

X, there exists a finite set of p-cycles T', T*, • • • , TJ in U(F, a) such

that every Tp in F~ 2~2i~i n*^t *n U(F, a), for suitable integers nt.1

Since X is 0-lc its components are open sets, and therefore the com-

pact set F meets only a finite number of them. It is clearly sufficient

to prove the theorem for each separate component meeting F, that

is, we may assume X to be connected.

The theorem is proved by combining the following results.

(A). Given a compact set Fi there exists a positive function X(«)

5 Cf. Eilenberg and Wilder [3] for the corresponding homotopy property.

• Note that the definition of a partial realisation t of K requires /(<r°) to be denned

for all 0-cells <r° of K. The norm of a full or partial realisation / of K is max p(x, y)

for *£||<(ov)||i y£||i(oj)||, where <r< and 07 are subcells of the same cell a of K. The

mesh of t is max a||<t'|[ for all simplexes a' of chains t(a). (a£ =diameter of E.)

' Wilder [8] (see also Begle [2, Corollary 2.3]) has proved that when homologies

are mod m, the conditions of Theorem 1 imply that at most a finite number of cycles

of F are independent in U(F, a). The analogous result with integral coefficients is

not strong enough for present purposes, since it would allow, for example, an infinite

base (r*) with r*~2r;+l.
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such that any partial chain-realisation to of a complex of dimension not

greater than p+\ of norm less than X(«) in Fi can be extended to a full

realisation in X of norm less than e; and there is a positive function

k(S, e) such that if mesh to<ic(ö, e), mesh t can be made less than 8.

This is Begle [2], Theorem 2.1.8 (Note that when /0 is defined only

for vertices the K-condition is automatically satisfied.)

The a of the enunciation of Theorem 1 may be supposed such that

Cl(U(F, a)) is compact. Let 2~2o €» be a positive series with sum less

than a, such that «„+i<e„/3 and, taking Fi = Cl(£/(F, a)) in (A),

«»+i<X(e„).

(B) Every finite cycle CJ in F of mesh less than «i is the first member of

a projection-cycle {(%] in U(F, a), the projection q>„: C'+r^Cl being

an «„-projection.9

Let r/„= Zo eri and make the inductive hypothesis that a finite

cycle Cn of mesh less than eB+i is defined in U(F, rjn-i) (for » = 0, in F).

Since U(F, v„-i)CZU(F, ct)CZFi, there is by (A) a chain-realisation

Cn+i of Cp, of mesh less than fn+2 and norm less than e„, and hence

contained in U(F, rjn_i4-6n) = U(F, vn). This justifies the recursive

definition of C*. For each vertex x of CJ+1 take <pn(x) to be any vertex

of the C'-carrier of x (defined above). Then <p„ is an e„-projection.

Let the sequence (e„) satisfy the conditions of (B), and also

e„+j<K(en+2, e„) (Fx being as before).

(C) Let Tf = (Z£J be, for r = \,2,a p-cycle in X. Sufficient conditions
for T\~Y1 in U(F, a) are

(1) ZPrn in U(F, Vn) forn = 0

and
p p

(2) Z10~«, ZM in U(F,t0).

Let Z?fl+l-ZPi„=ßY£-1 ( = boundary of F^1), where F£+1 is a

chain of mesh less than eB+3 in U(F, rjn) (whence mesh ZJJ, <en+3); and

let Zv10-ZP0=ßDp+1, where £»J+1is of mesh less than e2, and JJ»g+1

CZ/7(F, e0). Assume inductively that for some njäO, a finite chain

Dp+1 has been defined so that ßL%+l = Z\n-Zf„, mesh £>J+1 <en+2, and

Dl+1ClU(F,nn). ThenQi+1 = DP+1+Y!n+1-Yi+1 is a (p + l) -chain with

boundary Zf.+1-Zlfi+U and ||££+1|| C U(F, vJQFl A partial realisa-

tion, to, of f|C^+1|| is determined by putting /0(<r) =a if10 o-e||^||

* Our definitions are slightly different, but the proof is almost exactly similar.

' Cf. Begle [l, Lemma 2.4]. The property asserted of <t>n means that the projec-

tion-prism has mesh less than e„, and hence mesh C"n<tn+\.

10 llCnll =set °f vertices of ||QJ+,||, and in general Äi"=set of cells of K of dimen-

sions not greater than m.
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Vj||Z?>B+1||Vj||ZfiB+,||. Mesh <o<«b+4<k(€b+s, «B+i), and norm <0^mesh

||«7j£+1|| <€„+8 <X(eB+1). Hence to can be extended to give a realisation

DV„X\ of QZ+1, of mesh less than tn+s, and norm less than en+v Hence

p+i
Dn+1 C U(F, Vn + tB+1) = U(F, Wl);

and

ßDn+i = t(8Qn  ) = t(Zi,n+\ — Z2,„+i) = Zi,n+i — Zi,n+i.

The recursive definition of Z^+1 is justified, and (C) is therefore

proved.

Proof of Theorem 1. Let { U(xit e4/6} be a finite covering of F,

with x,£F, and let N be the nerve of the covering { U(Xi, e4/2)},

with the points xt as vertices. Choose a ^-dimensional basis of

homology C(p0 (*= 1, 2, • • • , k) of N. Since mesh N<et, (B) is ap-

plicable, with the series (e0, ei, • • • ) replaced by (€3, e4, • • • ), to give

a projection-cycle Tf in U(F, a) with first member Cfiy The cycles

T? are the required set. For let Tp be any £-cycle in F, and (ZJ)

(« = 0, 1, • • • ) a subsequence of its members satisfying

(a) Z„+i ~«„+, Z" in F, (b) mesh zl < e4/6.

If, for each x of F, 0(x) is a vertex of N in t/(;c, e4/6), and if x and y

are vertices of the same cell of Zl, p(9x, By) <e4/64-p(x, y)-f-€4/6

<e4/2, and hence 0 is a simplicial mapping of Z' into iV.

Let 0(ZJ) =Z'P~ Zi w>Go m A7, f°r some «,-. FAe pair of cycles

Tp and Zi «<Tf sa/ts/y <Ae conditions (1) a«<Z (2) o/ (C). Let Tf
= {Co,-, Cii, C2„ • • • }. Condition (1). For Tp this follows from (a)

above. The chain Zw» T is a projection-cycle for which <b„ is an

eB+3-projection, and all vertices of || Zw»C»i|| belong to [| Zw<C«+i>>l|-n

Hence condition (1) is satisfied if || CB+i,<|| Q U(F, r]n). This is so,

since ||CB+i,,||QU(F, Za+8«r) (proof of (B), er+3 replacing «r), and

Z"+3 «r< Zo «r = t/n. Condition (2). The 0-prism joining to ZJ Z'p

has mesh less than €4/2 <e2, whence Zf^^Z'" in F; and Z'p~ Zw<Qo

in TV, a complex of mesh less than e2 in F.

Theorem 2. If X is lcp, an open set Gi which is acp rel. an open set

G2 is also strongly acp rel. G2.

Suppose FCZGi with a margin a. For Ogqgp, let TJ, R, • • • , rj4

be a basis of g-cycles in U(F, a) constructed as in Theorem 1. Let T'

11 By the general rule that /(<r°) = <r°, above.
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bound in the subset Fa< of &. Then every g-cycle in F bounds in the

compact subset

F' = CL{U(F, a)) \J U  U Fti

of Gt.

3. Homotopy. The relation of homotopy is denoted by and

«-homotopy12 by      5" is the sphere Zo «2 = 1 in Sr is, for

r <p, the intersection of S1"1"1 with £r+i = 0; c0 is the point (1,0, • • •, 0)

of i?p+1. A set Ei is e-asp rel. E2 if, for Ogq^p, every mapping

f:S<->Ei ^. 0 in E* rel. c0.

Theorem 3. Let the open set G be LC"-1 rel. X1* and suppose that a

positive function 170(8, x) exists with this properly: to any point x, and

any compact F in GU(x, 170(8, x)) there corresponds a compact F'

in G U(x, 8) such that F is e-asp rel. F' for every positive e. Then

GU(x, 170(8, x)) is strongly as" rel. GU(x, 8); and therefore G is LC" rel. X.

{The LC*-1 condition is vacuously satisfied if p = 0.)

Corollary. If G = X and 170(8, x) =170(8), independent of x, X is

p-ULC.

This theorem replaces "Satz 6" of Hurewicz [4] in locally compact

spaces. Although our proof follows his closely, the many changes of

detail make it necessary to give the full proof, which depends on the

following lemmas D, E, and F.

(D) (p^l) Given a compact set F in a locally compact LCV~X space

X, and a positive number e, there exists a positive 172 = 172(6, F) with the

following property: if P is a polyhedron, and Q a subpolyhedron14 of

P*1-1, and if f0, fi map P into F and satisfy p(t<>, h) <Tj2, there exists a

mapping f0:P-+X, agreeing with /0 on Q, and deformable into fi within

e, in X*

The proof of (D) is omitted, since only obvious changes are needed

in the proofs of H, Sätze 1-3.

Let G be as in Theorem 3. Let F0CZG with a margin cv0, and let

0<8=a0. There exists a finite covering {17,-} = { U(xit 170(8, x,))/2}

a See H, p. 477:/i=i,/i if fi and /2 are connected by an echain of points in the

space of mappings.

ls This is the homotopy-local-connection introduced by Lefschetz [5]. For relative

local connection see Eilenberg and Wilder [3].

14 No distinction is made in terminology between a polyhedral complex P and the

polyhedron which is its locus; but the corresponding abstract simplicial complex de-

termined by the vertices of P is to be distinguished from P. It is denoted by ||P||.

u That is, ft and fi are connected in the space Xp by an arc of diameter less than «.
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of the compact set F0l with x,GF0- Since ji0(ö, Xi)=5=a0, Uf/.cg.

Let 773 = min,-170(0, xi).

(E) (/> = 1) 7//i, /2 maf <Äe p-element Ep {with boundary into

Fo, and ifft\ S^1 =/2| S^1 awi Afr(Ep) <-nz/2, for r = 1,2, <Ae»/i^:,/2
with fixed S"-1, i» z7(x,-, 5), /or some i.

If yG/i^1), one of the points *< satisfies p(xi, y)<i)o{d, xi)/2

and therefore/,(E")cf/^,., 773/24-170(5, x{)/2)QU(Xi, n0(S, Xi)) for

r = 1, 2. Hence /1—«/2 in z7(x<, 5), by the conditions of Theorem 3 and

H, Satz 4.

We suppose that for each compact F0 and each positive 5, such a

covering { £/<} is chosen, and denote the corresponding min< 170(8, xi)

by 173(8, Fo)- Let p(x, y) be defined as in H.16

(F) Given any compact F0 in G there exists 774(8, F0) >0 swcA //za/ if

/i, fi map Sp into F0 and p(fu /2) <774(8, F0), /Äe« ju(/i, /2) <8. (The

distances p(/i,/2) and ß{f\,fi) are in the function space Xs".)

First suppose />>0. Let a be a margin of F0 rel. G. We define:

the functions 772, 173 having the meanings given above. Let two map-

pings /1, /2 of Sp into F0 be given, satisfying p(/i, /2) < 174(5, Fo)- Let

Sp be simplicially subdivided into a polyhedron 2", so finely that

Afr(o-p) <£ for each (continuous) ^-simplex <rp of 2", r = l, 2. Then by

(D), a mapping/1 :5P—»X exists, agreeing with/i on Sp-1, and such

that/2^/i' within £ in G. Hence m(/i , /s) <£<5/2. Also, since 5'^a

// (Sp) C L7(>t0, «/2) CF»; and p(f{ ,/2) g/i(/Y,/») <£• Therefore A/f* (<r»)
<3£ = 7?3(4-1S', Fi)/2 for every o"" of 2". By Lemma (E) it follows

that//|o"pc^€/i|o-1', with fixed pVp, in a set of diameter 8/2, for every

positive e. Since this holds for every ap of 2", p(f{, fi) <5/2. Thus

If £ = 0 let 774(5, F0) =173(6', F0)/2. (The definition of 173 remains

significant when £ = 0.) It is sufficient in this case to show that if

x, y£F0 and p(x, y) <i74(5, F0), then x and y are joined by an €-chain

of points of G, of diameter less than 5. There exists a point Xi such

that p(x, Xi) <77o(8', x,)/2. Since p(x, y) <773/2 g770(8', xt)/2, x and y

are both in z7(xi, 770(8', x,))CI U(xi, a)ClG. Hence the required chain

exists, by the conditions of Theorem 3.

Theorem 3 can now be proved. Let a positive 8, a point x of X, and

a compact F in GU{x, 770(8, x)) be given, and let F' be a set as in the

5' = min (5, a), Fx = Cl (U(F0, a)),

174(8, Fo) = r,2(£, Fo),

M(/i, /2) gM(/i, fl) +M(/i . /i)< 5-

18 In any metric space R, n{x, y) is the greatest lower bound of diameters of sub-

sets of R in which * and y are «-connected for every positive t.
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enunciation of Theorem 3. Then Fis asp rel. F2 = Cl(U(F', ß)), where

ß is any margin of F' rel. GU(x, S). Let Sn = n^/2n, F2), \etx0 be a

point of F, and let / map S" into F. By the conditions of the theorem,

the points / and [x0] ( = constant function x0) of Fs" are joined by a

5i-chain, L\, of points, all lying in F's". Assume inductively that

L\, • ■ ■ , Ln have been determined, Lr being formed by joining

each consecutive pair of points of Lr~i by a 6>chain; and that the map-

pings which are the "points" of Ln all map Sp into U(F', Zi~1ß/2r)

CZF2 (into F' when « = 1). Two consecutive points /r, /, of Ln satisfy

p(Jr, /.) <on = v^/2", F2); and hence by Lemma (F), M(/r, /,) <ß/2«,

that is, /r and /, can be joined by a 5n+i-chain of total diameter less

than ß/2n in the function space. This justifies the recursive definition

of Ln.

It now follows, exactly as in H, p. 481, that Cl(UrZ-n) is the locus

of a continuous path joining/to [x0] in Ff. The proof of Theorem 3

is thus completed.

4. Homology and homotopy. Theorem 4, general case (£3:2). If

G is LCl rel. X and lcp rel. X there is a positive function f (5, x) such that

GU(x, J"(S, x)) is strongly asp rel. GU(x, 5) for all x of X.

Case 0: Put p=0 and omit "LC1 rel. X and."

Case 1: Put p = l and omit "and Ic1 rel. X."

Immediate corollaries of this theorem are

Theorem 4.1 (p^2). If G is LC1 and lcp it is LCP, all rel. X.

(When G = X this is the generalisation of Hurewicz's theorem to

locally compact spaces.)

Theorem 4.2 (£_0). If G isLCp rel. X there exists a positive func-

tion f (5, x) such that GU(x, f (5, x)) is strongly asp rel. GU(x, 5) for all

x of X.

Proof of Theorem 4, case 0. Let 77(0, x) be such that GU(x, ??(5, x))

is ac° rel. GU(x, 5), and let FCZGU(x, 77(0, x)). By Theorem 2 there is

an F' in GU(x, S) such that F is ac° rel. F'. This implies that for

any positive e any two points of F are joined by an 6-chain in F',

that is, that F is e-as° rel. F' for every positive e. Thus the conditions

of Theorem 3 (0) are satisfied, if 770 is replaced by 77.

Proof of Theorem 4, case 1. This is contained in the following

theorem.

Theorem 5. If X is LC1, any open set G\ which is as1 rel. an open

set G2 is also strongly as1 rel. G2.
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Let FQGi with margin aa. Then there exist positive ai and a2

such that, for r = 0, 1, if x^F, U(x, ar+i) is as1 rel. U(x, ar/3). Let

{ U(xit «s/6)} be a finite covering of F (xi£F), and let N be the nerve

of the covering { U(xi, a2/2)} realised in X, with the Xi as vertices. If

then P is a polyhedron abstractly isomorphic with N, the mapping

go of P° into N" determined by the isomorphism can be extended to a

mapping gi of P1 into U(F, «i/3).

Let/ be a re-entrant path in F, that is,/: (0, 1)-*F with/(0) =/(l)

= Xo = go(zo), say; and let the points 0<ti<t2< • • -<t* = 1 divide

/into sub-paths s,- of diameter less than a2/6. Now each f{r}) is in

some U(y,; a2/6), where y,EiV0 (yo = yk = x0), and a path y,- of di-

ameter less than «i/3 therefore runs from y, to /(t,-). By the usual

process of extruding "tails" the path /= 22s i1S deformable in U(F,

ai/3) into

k

22 (Yj-i + Sj - 7,)

the 22 an<i +-signs denoting the usual path-summation. Now

piVi-u ys) <<Xi/6+Asj-\-ai/6 <a2/2 and therefore y,_i, y,- are the gi-

images of the ends of a 1-cell <r/ of P1. Since gi(<r/) and7j_i-j-sy—7y

are both in U(yjt «i), the path 7y-i4-Sj—7j is deformable in U(yj, ceo),

with fixed end points, into the path gi|cr/. Thus/~gi(s) in U(F, a0),

where 5 is a path on P with s(0) =s(l) = z0.

Let Pi, P2, • • • , Pi be the components of P, and let the paths

ßir, fl2r, • • • , a>mTr in P' be representatives of a base of the funda-

mental group of P\. The path s lies in one component, say P), and

gis ~ + gia„ir + g^a^r + • • - + gianKr

on gi(Pj)Cf7(P, ai)CZGi. By hypothesis, for each i and r, g^.-^üO

in G2, and therefore in a compact set Fir in G2. Hence

/~ 0 in C1(C/(P, «„)) UU  U Fir
l i

a compact subset of G2 independent of /.

Proof of Theorem 4, general case (p^2). We make the induc-

tive assumption that 4fJ> —1) is proved, and may therefore, by

4.1 (p-1) and 4.2 (p-1), assume that G is LO~l rel. X. Let f'(5,x)

be the function corresponding to f in the dimension p — 1, and let

rj(5, be such that GU(x, v(5, x)) is acp rel. GU(x, 5) for every x.

Then f (5, x) way be put equal to r/(f'(5, x), x). This choice will be justi-

fied by Theorem 3 if it is shown that the condition of that theorem is

satisfied, with n0 replaced by f.
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Let FQGU(x, f(5, x)). By Theorem 2, there is an Fi

QGU(x, f'(5, x)) (with a margin a) such that F is acp rel. F\\ and by

Theorem 4(£-l) there is an F'ClGU(x, 5) such that Cl(U(Flt a)) is

asp_1 rel. F'. This is the set F' required in Theorem 3.

Since X is LC"-1 and Fi is compact, there is17 a positive function

f)i(£) such that, given a polyhedron Pp, and any subpolyhedron Q

containing all its vertices, any mapping fo'.Q—+Fi whose continuous

norm18 is less than t;i(£) can be extended to a mapping fi'.Pp—>X of

continuous norm less than £. Let a mapping /: SP—*F and a positive

€ <a be given. Divide Sp simplicially into a polyhedron 2>, and let

Cp be a fundamental £-cycle on ||Sp||.14 The simplicial division is to be

so fine that (a) A/(<r) <vi(e/2) for every (continuous) simplex a of

Sp; and (b) there exist an abstract complex isTp+1 containing ||SP||

as a subcomplex, a chain Cp+1 on Kp+1 with boundary Cp, and a

mapping f1:K»+1-+Fi of mesh less than r)i(e/2), with /i|S°=/|S°.

That this is possible follows from the definition of F%. Let Pp+1 be a

polyhedron such that [|PP+1|| =7^p+1 and 2> is a subpolyhedron of

Pp+1. The combination of / in S" and fi at the vertices of Kp+1 de-

termines a continuous mapping of the subpolyhedron 2>WP° of Pp

into Fi, of continuous norm less than i?i(e/2). It can therefore be ex-

tended to a mapping gi'.Pp—*X of continuous norm less than e/2.

Thus gi is a mapping into f/(Fi, «/2)CCl(?7(Fi, a)). From the defi-

nition of F' it follows that if yo=gi(c0)19 gilP^^fyo] in F'. Hence20

there exists a mapping g2:Pp—>F' such that gi^g2 in F', and

fclp»-1-w.
From this point on, the proof that /^«0 (rel. c0) in F' proceeds

exactly like the remainder of the proof in H (pp. 484 and 485) that

/~,0 (rel. Xo) in U. The proof of Theorem 4(p) is thereby completed.

From the definition of f it is clear that if f' and v are independent of

x, so also is f. The case G = X is then of most interest, and gives the

following theorems.

Theorem 6. If X is ULC1 and ulcp it is ULCP, if p = 2; and if X is
ulc" it is ULC°.

Theorem 6.1. (p^O). If X is ULCP there exists a positive function

f (S) such that U(x, f (5)) is strongly as" rel. U(x, 5) for all x of X.

17 Lefschetz [6, p. 120] =H, Satz (la). The modifications needed to allow for X

being only locally compact are obvious in view of the compactness of F\.

11 Continuous norm o//o = least upper bound of p(/o(jc), /o(y)) for x, y in the same

cell of P".
" Co is the point (1, 0, • • • , 0) (cf. §3).

»» H, Satz 2.
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