- 2. M. Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, Berlin, Springer, 1935.
- 3. G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 369-377.
- 4. ——, Double vector spaces over division rings, Amer. J. Math. vol. 51 (1949) pp. 443-460.
  - 5. N. Jacobson, A note on division rings, Amer. J. Math. vol. 49 (1947) pp. 27-36.

University of Illinois

## ON THE RADICAL OF A LIE ALGEBRA

## HARISH-CHANDRA

Let  $\mathfrak{L}$  be a Lie algebra over a field K of characteristic zero. For any  $X \in \mathfrak{L}$  we denote, as usual, the linear mapping  $Y \to [X, Y]$  of  $\mathfrak{L}$  into itself by ad X. Let  $\Gamma$  be the radical of  $\mathfrak{L}$ . Consider the set  $\mathfrak{L}$  consisting of all  $N \in \Gamma$  such that ad N is nilpotent. It was shown in a recent paper that  $\mathfrak{L}$  is the unique maximal nilpotent ideal of  $\mathfrak{L}$ . Further if D is a derivation of  $\Gamma$  then  $D\Gamma \subset \mathfrak{L}$ .

For any X, Y,  $Z \in \mathcal{E}$  put B(X, Y) = sp(ad X ad Y) and T(X, Y, Z) = sp(ad [X, Y] ad Z). Then B(X, Y) is a symmetric bilinear form on  $\mathcal{E}$  while T(X, Y, Z) is a skewsymmetric trilinear form. It is easily verified that they are both invariant under all derivations of  $\mathcal{E}$ , that is,

$$B(DX, Y) + B(X, DY) = 0,$$
  
 $T(DX, Y, Z) + T(X, DY, Z) + T(X, Y, DZ) = 0$ 

for any derivation D and X, Y,  $Z \in \mathbb{R}$ .

An ideal  $\mathfrak{M}$  in  $\mathfrak{L}$  is called characteristic if  $D\mathfrak{M} \subset \mathfrak{M}$  for every derivation D of  $\mathfrak{L}$ . Our first theorem may now be stated as follows:

THEOREM 1. An element X of  $\mathfrak{L}$  belongs to the radical  $\Gamma$  if and only if T(X, Y, Z) = 0 for all  $Y, Z \in \mathfrak{L}^3$ 

As an immediate corollary we get the following:

Received by the editors October 4, 1948 and, in revised form, November 11, 1948.

<sup>&</sup>lt;sup>1</sup> Ann. of Math. vol. 50 (1949) p. 68.

<sup>&</sup>lt;sup>2</sup> My attention has been drawn to a paper by Malcev (Bull. Acad. Sci. URSS. vol. 9 (1945) pp. 329–356) where it is shown that  $\Re$  is an ideal.

<sup>\*</sup> Since T(X, Y, Z) = -T(Z, Y, X) this condition is clearly equivalent to B(X, Y) = 0 for all  $Y \subseteq \emptyset' = [\emptyset, \emptyset]$ . Professor Jacobson has kindly brought it to my notice that this theorem is contained in Cartan's thesis p. 109.

COROLLARY 1. Both  $\Gamma$  and  $\Re$  are characteristic ideals in  $\Re$ .

For every  $N \in \mathfrak{N}$ , ad N is a nilpotent derivation of  $\mathfrak{L}$ . Hence  $\sigma_N = \exp$  (ad N) is defined and is an automorphism of  $\mathfrak{L}$ . Let  $\mathfrak{M}$  be any nilpotent ideal in  $\mathfrak{L}$ . Then  $\mathfrak{M} \subset \mathfrak{N}$ . By  $G_{\mathfrak{M}}$  we denote the group of all automorphisms of  $\mathfrak{L}$  of the form  $\sigma_{M_1}\sigma_{M_2}\cdots\sigma_{M_r}$ , where  $M_1, \cdots, M_r \in \mathfrak{M}$  and  $r \geq 1$ . Clearly every ideal is invariant under  $G_{\mathfrak{M}}$ . Our second theorem now runs as follows:

THEOREM 2. Let  $\mathfrak{S}$  be a semisimple subalgebra of  $\mathfrak{L}$  such that  $\mathfrak{L} = \mathfrak{S} + \Gamma$ . Then, given any semisimple subalgebra  $\mathfrak{M}$  of  $\mathfrak{L}$ , there exists a  $\sigma \in G_{\mathfrak{M}}$  such that  $\mathfrak{M} \subset \sigma \mathfrak{S}$ .

The following two corollaries follow immediately from this theorem.

Corollary 2. Any maximal semisimple subalgebra of  $\mathfrak L$  is isomorphic to  $\mathfrak L/\Gamma$ .

COROLLARY 3. Given any two maximal semisimple subalgebras  $\mathfrak{S}_1, \mathfrak{S}_2$  of  $\mathfrak{L}$ , there exists a  $\tau \in G_{\mathfrak{R}}$  such that  $\tau \mathfrak{S}_1 = \mathfrak{S}_2$ .

Corollary 3 is a sharper form of a result due to Malcev.4

PROOF OF THEOREM 1. First we shall prove that for any  $N \in \mathfrak{N}$ , B(N, Z) = 0 for all  $Z \in \mathfrak{L}$ . For any  $s \ge 1$  define  $\mathfrak{N}_{(s)}$  by induction as follows.  $\mathfrak{N}_{(1)} = \mathfrak{N}$ ,  $\mathfrak{N}_{(s+1)} = [\mathfrak{N}, \mathfrak{N}_{(s)}]$ . Then  $\mathfrak{N}_{(s)}$  is an ideal in  $\mathfrak{L}$  and therefore (ad N ad  $Z)\mathfrak{L} \subset \mathfrak{N}$  and (ad N ad  $Z)\mathfrak{N}_{(s)} \subset \mathfrak{N}_{(s+1)}$ . Hence (ad N ad  $Z)^{s+1}\mathfrak{L} = \mathfrak{N}_{(s)}$ . But  $\mathfrak{N}$  is nilpotent and therefore  $\mathfrak{N}_{(s)} = \{0\}$  for some s. Hence (ad N ad  $Z)^{s+1}\mathfrak{L} = \{0\}$  or (ad N ad  $Z)^{s+1} = 0$ . Therefore ad N ad Z is nilpotent and Sp(ad N ad Z) = B(N, Z) = 0.

Let  $\mathfrak{M}$  be the set of all  $X \in \mathfrak{L}$  such that T(X,Y,Z) = 0 for all  $Y,Z \in \mathfrak{L}$ . Since T is invariant under all derivations of  $\mathfrak{L}$ ,  $\mathfrak{M}$  is a characteristic ideal in  $\mathfrak{L}$ . We have to show that  $\mathfrak{M} = \Gamma$ . Let  $X \in \Gamma$ . For any  $Y \in \mathfrak{L}$ , ad Y is a derivation of  $\mathfrak{L}$  and  $\Gamma$  is invariant under ad Y. Hence ad Y induces a derivation of  $\Gamma$  and therefore (ad  $Y)\Gamma \subset \mathfrak{M}$ . So  $[X, Y] = -(\text{ad }Y)X \in \mathfrak{M}$ . Hence B([X, Y], Z) = T(X, Y, Z) = 0 for all  $Z \in \mathfrak{L}$ . Since this is true for every  $Y, X \in \mathfrak{M}$ . Hence  $\Gamma \subset \mathfrak{M}$ . On the other hand let  $\mathfrak{M}' = [\mathfrak{M}, \mathfrak{M}]$ . Then it is clear that for any  $M \in \mathfrak{M}'$ , B(M, Z) = 0 for all  $Z \in \mathfrak{L}$ . Hence by Cartan's criterion for solvability  $\mathfrak{M}'$  is solvable. Hence  $\mathfrak{M}$  is solvable and therefore  $\mathfrak{M} \subset \Gamma$ . So the theorem is proved.

Since  $\mathfrak{M}$  is a characteristic ideal the same is true of  $\Gamma$ . Hence if D is a derivation of  $\mathfrak{L}$ ,  $D\Gamma \subset \Gamma$  and so D induces a derivation of  $\Gamma$ . Therefore  $D\Gamma \subset \mathfrak{N}$  and so  $D\mathfrak{N} \subset D\Gamma \subset \mathfrak{N}$ . Hence  $\mathfrak{N}$  is also a characteristic ideal.

<sup>&</sup>lt;sup>4</sup> A. Malcev, C. R. Acad. Sci. URSS. vol. 36 (1942) p. 42.

PROOF OF THEOREM 2. Since  $\mathfrak{S}$  is semisimple  $\mathfrak{S} \cap \Gamma = \{0\}$ . Hence every  $P \in \mathfrak{M}$  can be written uniquely as

$$P = S(P) + \nu(P)$$

where  $S(P) \in \mathfrak{S}$  and  $\nu(P) \in \mathfrak{N}$ . Hence

$$[P, Q] = [S(P), S(Q)] + [S(P), \nu(Q)] + [\nu(P), S(Q)] + [\nu(P), \nu(Q)].$$

Therefore

$$S([P,Q]) = [S(P), S(Q)],$$
  
$$\nu([P,Q]) = [\nu(P), S(Q)] + [S(P), \nu(Q)] + [\nu(P), \nu(Q)].$$

We have already seen that (ad X) $\Gamma \subset \mathbb{N}$  for any  $X \in \mathbb{R}$ . Hence,  $\nu([P, Q]) \in \mathbb{N}$ . Let  $\nu$  denote the mapping  $P \rightarrow \nu(P)$ . Then  $\nu([\mathfrak{M}, \mathfrak{M}]) \subset \mathbb{N}$ . But  $\mathfrak{M}$  is semisimple. Therefore  $[\mathfrak{M}, \mathfrak{M}] = \mathfrak{M}$  and  $\nu(\mathfrak{M}) \subset \mathbb{N}$ . Hence  $\mathfrak{M} \subset \mathfrak{S} + \mathfrak{N}$ .

Put  $\mathfrak{L}_0 = \mathfrak{S} + \mathfrak{N}$ . First suppose that  $\mathfrak{N}$  is abelian. The mapping  $P \to S(P)$  is a homomorphic mapping of  $\mathfrak{M}$  into  $\mathfrak{S}$ . For any  $S \in \mathfrak{S}$  let  $D_S$  denote the derivation of  $\mathfrak{N}$  given by  $D_S N = [S, N]$   $(N \in \mathfrak{N})$ . Then the mapping  $\rho$  defined by  $\rho(P) = D_{S(P)}$  is a representation of  $\mathfrak{M}$ . Also, since  $\mathfrak{N}$  is abelian

$$\nu([P, Q]) = [S(P), \nu(Q)] - [S(Q), \nu(P)]$$
$$= \rho(P)\nu(Q) - \rho(Q)\nu(P).$$

Hence  $\nu$  is a Whitehead mapping of  $\mathfrak M$  into  $\mathfrak N$  with respect to the representation  $\rho$ . Therefore by the first Whitehead lemma<sup>5</sup> there exists an element  $-N \in \mathfrak N$  such that  $\nu(P) = -\rho(P)N = [N, S(P)]$ . Hence

$$P = S(P) + \nu(P) = S(P) + [N, S(P)] = \exp(\text{ad } N)S(P)$$

since (ad N)<sup>2</sup>=0,  $\mathfrak{N}$  being abelian. Therefore  $\mathfrak{M} \subset \sigma_N \mathfrak{S}$  and so the theorem is proved in this case.

Now consider the general case. Let  $n=\dim \mathfrak{N}$ . If  $n \leq 1$ ,  $\mathfrak{N}$  is abelian and so the theorem is true. Hence we can assume n>1 and use induction on n. Further we can assume that  $\mathfrak{N}$  is not abelian so that  $\mathfrak{N}'=[\mathfrak{N},\mathfrak{N}]\neq\{0\}$ . Let  $X\to \overline{X}$  denote the natural homomorphism of  $\mathfrak{L}_0$  onto  $\overline{\mathfrak{L}}_0=\mathfrak{L}_0/\mathfrak{N}'$ . The radical of  $\overline{\mathfrak{L}}_0$  is  $\overline{\mathfrak{N}}=\mathfrak{N}/\mathfrak{N}'$  which is abelian. Let  $\overline{\mathfrak{M}}$  and  $\overline{\mathfrak{S}}$  be the images of  $\mathfrak{M}$  and  $\mathfrak{S}$  respectively in  $\overline{\mathfrak{L}}_0$ . Then they are both semisimple and

<sup>&</sup>lt;sup>5</sup> See Hochschild, Amer. J. Math. vol. 64 (1942) p. 677.

$$\overline{\mathfrak{M}} \subset \overline{\mathfrak{S}} + \overline{\mathfrak{N}}.$$

Since  $\overline{\mathbb{R}}$  is abelian it follows from the above proof that there exists an  $\overline{\mathbb{N}} \subset \overline{\mathbb{R}}$  such that

$$\mathfrak{M} \subset \sigma_{\overline{N}} \mathfrak{S}$$
.

Let  $N \in \overline{N}$   $(N \in \mathfrak{N})$ . The complete inverse image of  $\sigma_{\overline{\mathfrak{N}}} \overline{\mathfrak{S}}$  in  $\mathfrak{L}_0$  is  $\mathfrak{S}_1 + \mathfrak{N}'$  where  $\mathfrak{S}_1 = \sigma_N \mathfrak{S}$ . Hence

$$\mathfrak{M} \subset \mathfrak{S}_1 + \mathfrak{N}'$$
.

Since  $\mathfrak{N}$  is nilpotent, dim  $\mathfrak{N}' < \dim \mathfrak{N} = n$ . Hence the induction hypothesis is applicable to  $\mathfrak{L}_1 = \mathfrak{S}_1 + \mathfrak{N}'$  and therefore there exists a  $\sigma_1 \subset G_{\mathfrak{N}'}$  such that  $\mathfrak{M} \subset \sigma_1 \mathfrak{S}_1$ . But  $G_{\mathfrak{N}'} \subset G_{\mathfrak{N}}$  and therefore  $\sigma = \sigma_1 \sigma_N \subset G_{\mathfrak{N}}$  and  $\mathfrak{M} \subset \sigma \mathfrak{S}$ .

Now let  $\mathfrak{S}^*$  be any maximal semisimple algebra of  $\mathfrak{L}$ . It follows from the above theorem that  $\mathfrak{S}^* \subset \sigma \mathfrak{S}$  for some  $\sigma \in G_{\mathfrak{R}}$ . Since  $\sigma$  is an automorphism of  $\mathfrak{L}$ ,  $\sigma \mathfrak{S}$  is semisimple. Therefore  $\mathfrak{S}^* = \sigma \mathfrak{S} \cong \mathfrak{L}/\Gamma$ .

If  $\mathfrak{S}_1$  and  $\mathfrak{S}_2$  are two maximal semisimple subalgebras of  $\mathfrak{L}$ , we can find  $\tau_1$ ,  $\tau_2 \in G_{\mathfrak{R}}$  such that  $\mathfrak{S}_1 = \tau_1 \mathfrak{S}$ ,  $\mathfrak{S}_2 = \tau_2 \mathfrak{S}$ . Then  $\tau \mathfrak{S}_1 = \mathfrak{S}_2$  where  $\tau = \tau_2 \tau_1^{-1} \in G_{\mathfrak{R}}$ .

Summary. Let  $\mathfrak{L}$  be a Lie algebra over a field of characteristic zero and let  $\Gamma$  be its radical. It is proved that any  $X \in \mathfrak{L}$  belongs to  $\Gamma$  if and only if  $sp(\operatorname{ad}[X, Y] \operatorname{ad} Z) = 0$  for all  $Y, Z \in \mathfrak{L}$ . Here  $X \to \operatorname{ad} X$  is the adjoint representation of  $\mathfrak{L}$ . Further let  $\mathfrak{L}$  be the maximal nilpotent ideal of  $\mathfrak{L}$  and let  $\mathfrak{L}$  and  $\mathfrak{L}$  be any two maximal semisimple subalgebras of  $\mathfrak{L}$ . Then  $\mathfrak{L} + \mathfrak{L} = \mathfrak{L} + \mathfrak{L}$  and  $\mathfrak{L}$  and  $\mathfrak{L}$  are conjugate in a certain strict sense.

INSTITUTE FOR ADVANCED STUDY