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Let & be a Lie algebra over a field K of characteristic zero. For any
X €2 we denote, as usual, the linear mapping Y—[X, Y] of € into it-
self by ad X. Let I be the radical of £ Consider the set ) consisting of
all N&TI such that ad N is nilpotent. It was shown in a recent paper!
that N is the unique maximal nilpotent ideal? of & Further if D is a
derivation of I' then DI'CR.

Forany X, ¥, Z€Q put B(X, Y)=sp(ad X ad Y) and T(X, ¥, 2)
=sp(ad [X, Y] ad Z). Then B(X, Y) is a symmetric bilinear form on
while T'(X, ¥, Z) is a skewsymmetric trilinear form. It is easily verified
that they are both invariant under all derivations of &, that is,

B(DX, Y) + B(X, DY) = 0,
T(DX,Y,Z) + T(X, DY, 2) + T(X, ¥, DZ) = 0

for any derivation D and X, ¥V, ZEQ.
An ideal I in L is called characteristic if DIRC I for every deriva-
tion D of & Our first theorem may now be stated as follows:

THEOREM 1. An element X of L belongs to the radical T if and only
if T(X, Y, Z)=0forall Y, ZER3

As an immediate corollary we get the following:
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1 Ann. of Math. vol. 50 (1949) p. 68.

? My attention has been drawn to a paper by Malcev (Bull. Acad. Sci. URSS.
vol. 9 (1945) pp. 329-356) where it is shown that N is an ideal.

3 Since T(X, Y, Z)=—T(Z, ¥, X) this condition is clearly equivalent to B(X, Y)
=0 for all YE{' =g, ]. Professor Jacobson has kindly brought it to my notice that
this theorem is contained in Cartan’s thesis p. 109.
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COROLLARY 1. Both T' and N are characteristic ideals in L.

For every NER, ad N is a nilpotent derivation of { Hence
oy=exp (ad N) is defined and is an automorphism of 2. Let M be
any nilpotent ideal in 8. Then MCN. By G we denote the group of
all automorphisms of ® of the form ouxon, - - - ou, Where My, - - -,
M,EM and r=1. Clearly every ideal is invariant under Gm. Our
second theorem now runs as follows:

THEOREM 2. Let & be a semisimple subalgebra of 2 such that =S+T.
Then, given any semisimple subalgebra MM of R, there exists a o &Gn
such that MCoS.

The following two corollaries follow immediately from this
theorem.

COROLLARY 2. Any maximal semisimple subalgebra of L is iso-
morphic to /T.

COROLLARY 3. Given any two maximal semisimple subalgebras
&y, ©; of R, there exists a T EGn such that 76, =,.

Corollary 3 is a sharper form of a result due to Malcev.4

Proor oF THEOREM 1. First we shall prove that for any NER,
B(N, Z)=0 for all Z€&. For any s=1 define N(, by induction as
follows. Ny =N, Reusn =[N, Nw]. Then N, is an ideal in & and
therefore (ad N ad Z)@CN and (ad N ad Z)N ) CNwsyy. Hence (ad
N ad Z)***12=R,). But N is nilpotent and therefore N, = {0} for
some s. Hence (ad N ad Z)*+'= {0} or (ad N ad Z)**1=0. Therefore
ad N ad Z is nilpotent and sp(ad N ad Z) =B(N, Z) =0.

Let I be the set of all X &¥such that T(X,Y, Z) =0 forallY,Z€L.
Since T is invariant under all derivations of £, I is a characteristic
ideal in €. We have to show that M=T. Let XET. For any YER,
ad Y is a derivation of ® and T is invariant under ad Y. Hence ad ¥
induces a derivation of I' and therefore (ad Y)ITCRN. So [X , Y]
=—(ad Y)XEN. Hence B([X, Y],2)=T(X, ¥, Z)=0 for all ZEQ.
Since this is true for every ¥, X&M. Hence I' CIMN. On the other hand
let M’ = [M, M]. Then it is clear that for any MEM’, B(M, Z) =0 for
all Z€R. Hence by Cartan’s criterion for solvability IR’ is solvable.
Hence IN is solvable and therefore MCTI'. So the theorem is proved.

Since M is a characteristic ideal the same is true of I". Hence if D
is a derivation of €, DI'CTI' and so D induces a derivation of T
Therefore DT CN and so DRCDI'CN. Hence N is also a character-
istic ideal.

4 A. Malcev, C. R. Acad. Sci. URSS. vol. 36 (1942) p. 42.
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ProoF oF THEOREM 2. Since & is semisimple &\I'= {0}. Hence
every PEI can be written uniquely as

P = S(P) + »(P)
where S(P) ES and »(P) ER. Hence
[P, 0] = [S(P), (@] + [S(P), »(O)]
+ [(P), S@] + [(P), »Q)].
Therefore

S([P, Q] = [s(P), S@],
([P, QD) = [(P), S@] + [S(P), »@] + [(P), »@].

We have already seen that (ad X)I'C® for any X&Q Hence,
v([P, Q]) ER. Let » denote the mapping P—w(P). Then »([IR, M])
CR. But M is semisimple. Therefore [P, M]=M and »(M) CN.
Hence MCS+N.

Put 2,=&+N. First suppose that N is abelian. The mapping
P—S(P) is a homomorphic mapping of IM into &. For any SES let
Ds denote the derivation of R given by DgN=[S, N] (NERN).
Then the mapping p defined by p(P) =Dgp) is a representation of IN.
Also, since N is abelian

([P, Q] = [5(P), »@] - [5@), »(P)]
= p(P)(Q) — p(@)(P).

Hence v is a Whitehead mapping of I into N with respect to the
representation p. Therefore by the first Whitehead lemma® there
exists an element —NEN such that »(P)=—p(P)N=[N, S(P)].
Hence

P = S(P) + »(P) = S(P) + [N, S(P)] = exp (ad N)S(P)

since (ad N)2=0, R being abelian. Therefore MCoxyS and so the
theorem is proved in this case.

Now consider the general case. Let #=dim RN. If =<1, N is
abelian and so the theorem is true. Hence we can assume 7> 1 and use
induction on 7. Further we can assume that N is not abelian so that
N'=[N, N]>={0}. Let X—>X denote the natural homomorphism of
2o onto Yo=2/N’. The radical of & is R=N/N’ which is abelian.
Let M and & be the images of M and & respectively in &. Then they
are both semisimple and

& See Hochschild, Amer. J. Math. vol. 64 (1942) p. 677.
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MCS+ %

Since ﬁ_is abelian it follows from the above proof that there exists

an NEN such that

M C 7.

Let NEN (NERN). The complete inverse image of o5 in & is
&1+ N’ where &, =05&. Hence

MCS: + N.

Since N is nilpotent, dim N’ <dim N=n. Hence the induction hy-
pothesis is applicable to £,=&,+MR’ and therefore there exists a
01 EGw such that M Co:1S,. But G CGn and therefore ¢ =008 EGn
and MCo©.

Now let &* be any maximal semisimple algebra of 2. It follows
from the above theorem that &*Ce®© for some ¢ EGa. Since o is an
automorphism of &, 0& is semisimple. Therefore &* =c&S>S>~/T.

If &, and &; are two maximal semisimple subalgebras of £, we can
find 71, 7:EGn such that &,=76, S;=7:&. Then 76, =&, where
T =711 ' EGa.

Summary. Let £ be a Lie algebra over a field of characteristic
zero and let T’ be its radical. It is proved that any X &8 belongs to
T'if and only if sp(ad [X, ¥] ad Z) =0 for all ¥, ZER. Here X— ad X
is the adjoint representation of €. Further let )t be the maximal nil-
potent ideal of § and let & and &* be any two maximal semisimple
subalgebras of & Then &4+N=&*4+N and & and &* are conjugate

in a certain strict sense.
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