- 2. M. Deuring, Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 4, Berlin, Springer, 1935. - 3. G. Hochschild, On the structure of algebras with nonzero radical, Bull. Amer. Math. Soc. vol. 53 (1947) pp. 369-377. - 4. ——, Double vector spaces over division rings, Amer. J. Math. vol. 51 (1949) pp. 443-460. - 5. N. Jacobson, A note on division rings, Amer. J. Math. vol. 49 (1947) pp. 27-36. University of Illinois ## ON THE RADICAL OF A LIE ALGEBRA ## HARISH-CHANDRA Let \mathfrak{L} be a Lie algebra over a field K of characteristic zero. For any $X \in \mathfrak{L}$ we denote, as usual, the linear mapping $Y \to [X, Y]$ of \mathfrak{L} into itself by ad X. Let Γ be the radical of \mathfrak{L} . Consider the set \mathfrak{L} consisting of all $N \in \Gamma$ such that ad N is nilpotent. It was shown in a recent paper that \mathfrak{L} is the unique maximal nilpotent ideal of \mathfrak{L} . Further if D is a derivation of Γ then $D\Gamma \subset \mathfrak{L}$. For any X, Y, $Z \in \mathcal{E}$ put B(X, Y) = sp(ad X ad Y) and T(X, Y, Z) = sp(ad [X, Y] ad Z). Then B(X, Y) is a symmetric bilinear form on \mathcal{E} while T(X, Y, Z) is a skewsymmetric trilinear form. It is easily verified that they are both invariant under all derivations of \mathcal{E} , that is, $$B(DX, Y) + B(X, DY) = 0,$$ $T(DX, Y, Z) + T(X, DY, Z) + T(X, Y, DZ) = 0$ for any derivation D and X, Y, $Z \in \mathbb{R}$. An ideal \mathfrak{M} in \mathfrak{L} is called characteristic if $D\mathfrak{M} \subset \mathfrak{M}$ for every derivation D of \mathfrak{L} . Our first theorem may now be stated as follows: THEOREM 1. An element X of \mathfrak{L} belongs to the radical Γ if and only if T(X, Y, Z) = 0 for all $Y, Z \in \mathfrak{L}^3$ As an immediate corollary we get the following: Received by the editors October 4, 1948 and, in revised form, November 11, 1948. ¹ Ann. of Math. vol. 50 (1949) p. 68. ² My attention has been drawn to a paper by Malcev (Bull. Acad. Sci. URSS. vol. 9 (1945) pp. 329–356) where it is shown that \Re is an ideal. ^{*} Since T(X, Y, Z) = -T(Z, Y, X) this condition is clearly equivalent to B(X, Y) = 0 for all $Y \subseteq \emptyset' = [\emptyset, \emptyset]$. Professor Jacobson has kindly brought it to my notice that this theorem is contained in Cartan's thesis p. 109. COROLLARY 1. Both Γ and \Re are characteristic ideals in \Re . For every $N \in \mathfrak{N}$, ad N is a nilpotent derivation of \mathfrak{L} . Hence $\sigma_N = \exp$ (ad N) is defined and is an automorphism of \mathfrak{L} . Let \mathfrak{M} be any nilpotent ideal in \mathfrak{L} . Then $\mathfrak{M} \subset \mathfrak{N}$. By $G_{\mathfrak{M}}$ we denote the group of all automorphisms of \mathfrak{L} of the form $\sigma_{M_1}\sigma_{M_2}\cdots\sigma_{M_r}$, where $M_1, \cdots, M_r \in \mathfrak{M}$ and $r \geq 1$. Clearly every ideal is invariant under $G_{\mathfrak{M}}$. Our second theorem now runs as follows: THEOREM 2. Let \mathfrak{S} be a semisimple subalgebra of \mathfrak{L} such that $\mathfrak{L} = \mathfrak{S} + \Gamma$. Then, given any semisimple subalgebra \mathfrak{M} of \mathfrak{L} , there exists a $\sigma \in G_{\mathfrak{M}}$ such that $\mathfrak{M} \subset \sigma \mathfrak{S}$. The following two corollaries follow immediately from this theorem. Corollary 2. Any maximal semisimple subalgebra of $\mathfrak L$ is isomorphic to $\mathfrak L/\Gamma$. COROLLARY 3. Given any two maximal semisimple subalgebras $\mathfrak{S}_1, \mathfrak{S}_2$ of \mathfrak{L} , there exists a $\tau \in G_{\mathfrak{R}}$ such that $\tau \mathfrak{S}_1 = \mathfrak{S}_2$. Corollary 3 is a sharper form of a result due to Malcev.4 PROOF OF THEOREM 1. First we shall prove that for any $N \in \mathfrak{N}$, B(N, Z) = 0 for all $Z \in \mathfrak{L}$. For any $s \ge 1$ define $\mathfrak{N}_{(s)}$ by induction as follows. $\mathfrak{N}_{(1)} = \mathfrak{N}$, $\mathfrak{N}_{(s+1)} = [\mathfrak{N}, \mathfrak{N}_{(s)}]$. Then $\mathfrak{N}_{(s)}$ is an ideal in \mathfrak{L} and therefore (ad N ad $Z)\mathfrak{L} \subset \mathfrak{N}$ and (ad N ad $Z)\mathfrak{N}_{(s)} \subset \mathfrak{N}_{(s+1)}$. Hence (ad N ad $Z)^{s+1}\mathfrak{L} = \mathfrak{N}_{(s)}$. But \mathfrak{N} is nilpotent and therefore $\mathfrak{N}_{(s)} = \{0\}$ for some s. Hence (ad N ad $Z)^{s+1}\mathfrak{L} = \{0\}$ or (ad N ad $Z)^{s+1} = 0$. Therefore ad N ad Z is nilpotent and Sp(ad N ad Z) = B(N, Z) = 0. Let \mathfrak{M} be the set of all $X \in \mathfrak{L}$ such that T(X,Y,Z) = 0 for all $Y,Z \in \mathfrak{L}$. Since T is invariant under all derivations of \mathfrak{L} , \mathfrak{M} is a characteristic ideal in \mathfrak{L} . We have to show that $\mathfrak{M} = \Gamma$. Let $X \in \Gamma$. For any $Y \in \mathfrak{L}$, ad Y is a derivation of \mathfrak{L} and Γ is invariant under ad Y. Hence ad Y induces a derivation of Γ and therefore (ad $Y)\Gamma \subset \mathfrak{M}$. So $[X, Y] = -(\text{ad }Y)X \in \mathfrak{M}$. Hence B([X, Y], Z) = T(X, Y, Z) = 0 for all $Z \in \mathfrak{L}$. Since this is true for every $Y, X \in \mathfrak{M}$. Hence $\Gamma \subset \mathfrak{M}$. On the other hand let $\mathfrak{M}' = [\mathfrak{M}, \mathfrak{M}]$. Then it is clear that for any $M \in \mathfrak{M}'$, B(M, Z) = 0 for all $Z \in \mathfrak{L}$. Hence by Cartan's criterion for solvability \mathfrak{M}' is solvable. Hence \mathfrak{M} is solvable and therefore $\mathfrak{M} \subset \Gamma$. So the theorem is proved. Since \mathfrak{M} is a characteristic ideal the same is true of Γ . Hence if D is a derivation of \mathfrak{L} , $D\Gamma \subset \Gamma$ and so D induces a derivation of Γ . Therefore $D\Gamma \subset \mathfrak{N}$ and so $D\mathfrak{N} \subset D\Gamma \subset \mathfrak{N}$. Hence \mathfrak{N} is also a characteristic ideal. ⁴ A. Malcev, C. R. Acad. Sci. URSS. vol. 36 (1942) p. 42. PROOF OF THEOREM 2. Since \mathfrak{S} is semisimple $\mathfrak{S} \cap \Gamma = \{0\}$. Hence every $P \in \mathfrak{M}$ can be written uniquely as $$P = S(P) + \nu(P)$$ where $S(P) \in \mathfrak{S}$ and $\nu(P) \in \mathfrak{N}$. Hence $$[P, Q] = [S(P), S(Q)] + [S(P), \nu(Q)] + [\nu(P), S(Q)] + [\nu(P), \nu(Q)].$$ Therefore $$S([P,Q]) = [S(P), S(Q)],$$ $$\nu([P,Q]) = [\nu(P), S(Q)] + [S(P), \nu(Q)] + [\nu(P), \nu(Q)].$$ We have already seen that (ad X) $\Gamma \subset \mathbb{N}$ for any $X \in \mathbb{R}$. Hence, $\nu([P, Q]) \in \mathbb{N}$. Let ν denote the mapping $P \rightarrow \nu(P)$. Then $\nu([\mathfrak{M}, \mathfrak{M}]) \subset \mathbb{N}$. But \mathfrak{M} is semisimple. Therefore $[\mathfrak{M}, \mathfrak{M}] = \mathfrak{M}$ and $\nu(\mathfrak{M}) \subset \mathbb{N}$. Hence $\mathfrak{M} \subset \mathfrak{S} + \mathfrak{N}$. Put $\mathfrak{L}_0 = \mathfrak{S} + \mathfrak{N}$. First suppose that \mathfrak{N} is abelian. The mapping $P \to S(P)$ is a homomorphic mapping of \mathfrak{M} into \mathfrak{S} . For any $S \in \mathfrak{S}$ let D_S denote the derivation of \mathfrak{N} given by $D_S N = [S, N]$ $(N \in \mathfrak{N})$. Then the mapping ρ defined by $\rho(P) = D_{S(P)}$ is a representation of \mathfrak{M} . Also, since \mathfrak{N} is abelian $$\nu([P, Q]) = [S(P), \nu(Q)] - [S(Q), \nu(P)]$$ $$= \rho(P)\nu(Q) - \rho(Q)\nu(P).$$ Hence ν is a Whitehead mapping of $\mathfrak M$ into $\mathfrak N$ with respect to the representation ρ . Therefore by the first Whitehead lemma⁵ there exists an element $-N \in \mathfrak N$ such that $\nu(P) = -\rho(P)N = [N, S(P)]$. Hence $$P = S(P) + \nu(P) = S(P) + [N, S(P)] = \exp(\text{ad } N)S(P)$$ since (ad N)²=0, \mathfrak{N} being abelian. Therefore $\mathfrak{M} \subset \sigma_N \mathfrak{S}$ and so the theorem is proved in this case. Now consider the general case. Let $n=\dim \mathfrak{N}$. If $n \leq 1$, \mathfrak{N} is abelian and so the theorem is true. Hence we can assume n>1 and use induction on n. Further we can assume that \mathfrak{N} is not abelian so that $\mathfrak{N}'=[\mathfrak{N},\mathfrak{N}]\neq\{0\}$. Let $X\to \overline{X}$ denote the natural homomorphism of \mathfrak{L}_0 onto $\overline{\mathfrak{L}}_0=\mathfrak{L}_0/\mathfrak{N}'$. The radical of $\overline{\mathfrak{L}}_0$ is $\overline{\mathfrak{N}}=\mathfrak{N}/\mathfrak{N}'$ which is abelian. Let $\overline{\mathfrak{M}}$ and $\overline{\mathfrak{S}}$ be the images of \mathfrak{M} and \mathfrak{S} respectively in $\overline{\mathfrak{L}}_0$. Then they are both semisimple and ⁵ See Hochschild, Amer. J. Math. vol. 64 (1942) p. 677. $$\overline{\mathfrak{M}} \subset \overline{\mathfrak{S}} + \overline{\mathfrak{N}}.$$ Since $\overline{\mathbb{R}}$ is abelian it follows from the above proof that there exists an $\overline{\mathbb{N}} \subset \overline{\mathbb{R}}$ such that $$\mathfrak{M} \subset \sigma_{\overline{N}} \mathfrak{S}$$. Let $N \in \overline{N}$ $(N \in \mathfrak{N})$. The complete inverse image of $\sigma_{\overline{\mathfrak{N}}} \overline{\mathfrak{S}}$ in \mathfrak{L}_0 is $\mathfrak{S}_1 + \mathfrak{N}'$ where $\mathfrak{S}_1 = \sigma_N \mathfrak{S}$. Hence $$\mathfrak{M} \subset \mathfrak{S}_1 + \mathfrak{N}'$$. Since \mathfrak{N} is nilpotent, dim $\mathfrak{N}' < \dim \mathfrak{N} = n$. Hence the induction hypothesis is applicable to $\mathfrak{L}_1 = \mathfrak{S}_1 + \mathfrak{N}'$ and therefore there exists a $\sigma_1 \subset G_{\mathfrak{N}'}$ such that $\mathfrak{M} \subset \sigma_1 \mathfrak{S}_1$. But $G_{\mathfrak{N}'} \subset G_{\mathfrak{N}}$ and therefore $\sigma = \sigma_1 \sigma_N \subset G_{\mathfrak{N}}$ and $\mathfrak{M} \subset \sigma \mathfrak{S}$. Now let \mathfrak{S}^* be any maximal semisimple algebra of \mathfrak{L} . It follows from the above theorem that $\mathfrak{S}^* \subset \sigma \mathfrak{S}$ for some $\sigma \in G_{\mathfrak{R}}$. Since σ is an automorphism of \mathfrak{L} , $\sigma \mathfrak{S}$ is semisimple. Therefore $\mathfrak{S}^* = \sigma \mathfrak{S} \cong \mathfrak{L}/\Gamma$. If \mathfrak{S}_1 and \mathfrak{S}_2 are two maximal semisimple subalgebras of \mathfrak{L} , we can find τ_1 , $\tau_2 \in G_{\mathfrak{R}}$ such that $\mathfrak{S}_1 = \tau_1 \mathfrak{S}$, $\mathfrak{S}_2 = \tau_2 \mathfrak{S}$. Then $\tau \mathfrak{S}_1 = \mathfrak{S}_2$ where $\tau = \tau_2 \tau_1^{-1} \in G_{\mathfrak{R}}$. Summary. Let \mathfrak{L} be a Lie algebra over a field of characteristic zero and let Γ be its radical. It is proved that any $X \in \mathfrak{L}$ belongs to Γ if and only if $sp(\operatorname{ad}[X, Y] \operatorname{ad} Z) = 0$ for all $Y, Z \in \mathfrak{L}$. Here $X \to \operatorname{ad} X$ is the adjoint representation of \mathfrak{L} . Further let \mathfrak{L} be the maximal nilpotent ideal of \mathfrak{L} and let \mathfrak{L} and \mathfrak{L} be any two maximal semisimple subalgebras of \mathfrak{L} . Then $\mathfrak{L} + \mathfrak{L} = \mathfrak{L} + \mathfrak{L}$ and \mathfrak{L} and \mathfrak{L} are conjugate in a certain strict sense. INSTITUTE FOR ADVANCED STUDY