ON FAITHFUL REPRESENTATIONS OF LIE GROUPS
HARISH-CHANDRA

Let G and H be two connected Lie groups and ¢ a continuous
homomorphism of H into the group of automorphisms of G. Then we
define a new group GX4H as follows. The elements of GX4H are
pairs (g, k) (g€G, kEH) and group multiplication is defined by

(g1, 71) (g2, h3) = (g1(d(h1)g2), hrhs).

Topologically GX4H is taken to be just the Cartesian product of G
and H. It is then easily proved that under this topology GX4H is a
Lie group. It is called the semidirect product of G and H under ¢. The
object of this note is to prove the following theorem.

THEOREM. Let G be a connected, simply connected solvable Lie group
and H a connected Lie group which has a faithful representation. Let ¢
be any continuous homomorphism of H into the group of automorphisms
of G. Then GX4H has a faithful representation.

The special case of this theorem when H is semisimple is due to
Cartan.!

Let R be the field of real numbers and K the field of either real or
complex numbers. Let G be a connected Lie group with the Lie alge-
bra g and 0 a representation of G over K of degree d. Then we denote
by df the representation of g given by?

a(s) = i LD =T xe9

—0 ¢

where tER and I is the unit matrix of degree d. Let GL(K, d) denote
the group of all nonsingular matrices of degree d with coefficients in
K. Any subgroup of GL(K, d) will be called a linear group of degree
d. Let 0 be the identity representation of a linear Lie group G with the
Lie algebra g so that 8(x) =x (x €G). Then df is a faithful representa-
tion of g and exp d6(X)=0(exp X)=exp X for any xEg. Hence we
may identify g with df(g) under df. g can therefore be regarded as a
linear Lie algebra. In particular the Lie algebra of GL(K, d) then
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consists of all matrices of degree d with coefficients in K. We denote
it by gl(K, d). Given any subalgebra §Cgl(X, d), by the linear Lie
group generated by § we mean the analytic subgroup of GL(K, d)
corresponding to b.

Let us call a matrix subtriangular if it has zeros on and below the
the diagonal. First we state the following two well known lemmas.

LEMMA 1.3 Let 0 be the Lie algebra of all subtriangular d Xd matrices
over K and let G be the linear Lie group generated by N. Then X —exp X
s a topological mapping of M onto G. Also G consists of all matrices
which have zeros below the diagonal and 1 everywhere on the diagonal.

LEMMA 2.4 Let G be a connected, simply connected solvable Lie group.
Then every analytic subgroup of G is closed and simply connected.

From now on I adhere strictly to the notation of my paper, Faith-
ful representations of Lie algebras,® which will be quoted as FRL.

LeMMA 3. Let &, N, D be as in Lemma 1 of FRL. We construct the
faithful representation 0 of {+D as described there. Then for any
Yh R Y.Eg and D11 Tty DcGQ’

(1) exp8(Yy) - -exp0(Y,) =~ I unless exp¥,---exp ¥, =I",
(2) expO(Dy) :--expb(D,) =1

if and only if exp D, - - - exp D, = I,
where I, I', and 1" are unit mairices of suitable degrees.

If we use the notation of the proof of Lemma 1 of FRL, (1) follows
immediately from the fact that A/¥=>~%*/%* where ¥*=%/%,. Now
we prove (2). Put w*(X)=(w(X))* for XER Then it is easily
proved by induction on s that for any DED

{6(D) }w*(X) = w*(D°X), s 1.
Hence (exp 0(D))w*(X)=w*((exp D)X). Also since (D)=d} is a

derivation of A*=%A/%,, exp 0(D) is an automorphism of A*. Put
Yx=(exp Dy) - - - (exp D,)X (XER). Then if

exp 6(D,) - - - exp 8(D,) = I,
w*(Yx)—w*(X)=0 for every X€EL2 Hence w(¥x—X)EX,CX.
Therefore 7w(¥Yx —X)=Yx— X =0. Since this is true for every X,

* Birkhoff, Ann. of Math. vol. 38 (1937) pp. 526-532.
¢ Chevalley, Ann. of Math. vol. 42 (1941) pp. 668-675.
$ Harish-Chandra, Ann. of Math. vol. 50 (1949) pp. 68-76.
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(exp D)) - - - (exp D,)=1I'. Theconverseisobvious. Hence the lemma
is proved.

LeEMMA 4. Let G be a connected, simply connected solvable Lie group
with Lie algebra g. Let N be the maximal nilpotent ideal of g. Then
G has a faithful representation ¥ such that d¥(X) is nilpotent for
every XEMN.

By Corollary 1 of FRL we can find a faithful representation po of
g such that po(X) is nilpotent for every XEN. We can therefore
choose, if necessary, a new base in our representation space such that
with respect to this base the matrix representing po(X) is subtri-
angular for every XEN. Now consider the factor algebra g/N
which is abelian and hence nilpotent. By the same corollary it follows
that g/M has a faithful representation by nilpotent matrices. Hence
g has a representation p; such that the kernel of p; is Rt and p1(X)
is nilpotent for all X&g. We can again arrange that p,(X) is sub-
triangular for all X. Put p=po+p;, where + denotes direct sum.
Since G is simply connected, there exist representations Yo and ¥ of
G such that dyo=po, d¥1=p1. Put ¢ =¢o+y1. Then d¢ =p. Let N be
the analytic subgroup of G corresponding to N. Then from Lemma 2,
N is a closed invariant subgroup. Consider (). It is clear that
dY(Y)=po(Y)+p:i(Y) is subtriangular for all YER. Hence from
Lemmas 1 and 2 it follows that the linear Lie group ¥ (N) generated
by dy(RN) is simply connected. Since dy is an isomorphism, Y(N) is
locally isomorphic to N. Therefore since (V) is simply connected,
¥ maps N isomorphically. Similarly we prove that Y1(G) is simply
connected. It is clear that the kernel of ¥, contains N. Hence ¢, de-
fines a representation ¢* of G/N given by ¢*(x*) =y1(x) where
x—x* is the natural homomorphism of G onto G/N=G*. Since dy*
is an isomorphism, the kernel of dy;=p, being N, it follows from the
simple connectivity of ¥*(G*)=y1(G) that Yy* is an isomorphism.
Hence the kernel of ¥, is exactly N. Let D be the kernel of . Then
D is contained in the kernel of ¢¥; which is N. Also since ¢ is faithful
on N, DNNN= {e} where e is the unit element of N. Hence D= {¢}
and ¢ is a faithful representation. Also dy/(X) is nilpotent for every
Xen

Now we come to the proof of the theorem. Let g be the Lie algebra
of G and N the maximal nilpotent ideal of g. By Lemma 4, G has a
faithful representation. Hence we may assume that G is a linear Lie
group such that every element of N is nilpotent. We keep to the
notation of LLemma 3 except that { is replaced by g. Let b be the Lie
algebra of H. Define a homomorphism dr of § into D as follows. Let
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Aut (G) be the group of automorphisms of G. Then Aut (G) is a Lie
group with a Lie algebra . It is well known that there exists an
isomorphism N of A onto D such that

(exp 4) exp X = exp ((exp M4))X)

for any AEN and XEg. We put dr=Nod¢p where d¢ is the homo-
morphism of § into ¥ induced by ¢. Then for any P;€), 117,

¢(exp Py - - - exp P,) exp X = exp ((exp dr(P) - - - exp dr(P,))X).

Let e and ¢’ denote the identity elements of G and H respectively.
Suppose exp .P; - - - exp P,=e’. Then clearly

exp X = ¢p(exp P, - exp P,) exp X
= exp ((exp dr(P1) - - - exp dr(P,))X).
Since this is true for every X Eg,
exp dr(Py) - - - exp dr(P,) = I'.
Hence we can define a representation 7 of H by the rule
7(exp Py - - - exp P,) = exp dr(P,) - - - exp dr(P,) (Py, - -, Pr ED).

Put dy =0odr. Then dy is a representation of h. Suppose exp P, - - *
exp P,=¢ (Py, - - -, P,ED). Then

7(exp Py - - exp P,) = expdr(Py) - - - expdr(P,) =TI’
and from Lemma 3
exp dy(P,) - - - exp d¥(P,) = I.
Hence we can again define a representation ¥ of H by putting
V(exp P, - - - exp P,) = expdy(Py) - - - expd¢(Py) (P1,---, P ED).

Also since G is simply connected there exists a representation x of
G such that dx(X)=0(X) for every X&g. Hence

x(exp¥1---exp¥,) =expb(¥V,) ---expd(¥,) (V€0 1=i=7).

From Lemma 3 it follows that x is faithful.
Consider the mapping u of GX H defined by u(g, k) =x(g)y¥ (k).
We claim that u is a representation. For any P€hand X &g consider

¥(exp P)x(exp X)(¥(exp P))~! = exp dy(P) exp 6(X) exp (—dy(P))
= exp 6(D) exp 6(X) exp (—6(D))
where D=dr(P). Now for any two elements 4, BEgI(K, d),
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exp A exp B exp (—A) = exp ((exp ad 4)B)

where ad A is defined as in FRL. Since [0(D), 6(V)]=6([D, Y])
=0(DY) for any Y Eg, it follows immediately that

exp 6(D) exp 6(X) exp (—6(D)) = exp 0((exp D)X)
= exp 0(r(exp P)X)
= x(exp r(exp P)X)
x(¢(exp P) exp X).

Since any hE€H can be written in the form exp P, - - -exp P,
P;ch, 1<isr,r=1, we get

¥(B)x(exp X)(¥ (1))~ = x(¢(k) exp X).

Similarly since every g&G can be written as exp Y1 - -exp Y.,
Y.€g, 1<:i<r,7=1, we have

Y(B)x(@)W(h) = x(¢(h)e).

Therefore

u((gyy m1)(g2 h2)) = u(gad(h1)ge, ki) = x(g10(h1)g2)¥ (h1hs)
= x(g)x(6(h1)g2)¥ (h1)¥(hs)
= x(g)¥(k)x(g2)¥(hz) = u(gs, h1)u(gs, ko).

Since u is clearly a continuous mapping it is a representation of
GX4H. By hypothesis H has a faithful representation »,. Define a
representation » of G X4H by »(g, ) =ve(k) and put §=u-». Suppose
(g, k) belongs to the kernel of £. Then since £(g, k) =u(g, h)+vo(h)
=x(g)¥(h)+ro(h) and since v, is faithful on H, h=e’. Hence g belongs
to the kernel of x. But as x is faithful on G, g=e. Therefore (g, k)
= (e, ¢’) and £ is faithful on G X H.

CoroLLARY (MALCEV).! 4 connected solvable Lie group G has a
fatthful representation if and only if G=NA, where N is a closed,
connected, simply connected invariant subgroup and A is a connected,
compact abelian subgroup such that NNMA = {e } .

Suppose G=NA. For any a €A let ¢(a) denote the automorphism
of N given by ¢(a)n=ana~! (nEN). Then it is easily seen that
(n, a)—na is an isomorphism of N X 44 onto G. Since 4 is compact,
it has a faithful representation. Hence by the above theorem it fol-
lows immediately that G has a faithful representation.

In order to establish the converse we make use of the following
lemma which follows easily from the results of Chevalley.4
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LEMMA 5.8 If G is a connected solvable Lie group and N a closed,
connected invartant subgroup such that G/ N is compact, then there exists
a compact connected abelian subgroup A of G such that G=AN and
ANN is finite.

Returning to the corollary, suppose G is linear. Since g is solvable,
we deduce in the usual way that every element XE[g, g]=¢’ is
nilpotent and therefore may be assumed to be subtriangular. There-
fore by Lemmas 1 and 2 the group G’ generated by g’ is simply con-
nected. Let d be the degree of G and G, the group of all matrices in
GL(K, d) which have zero below the diagonal and 1 everywhere on
the diagonal. By Lemma 2, G’ is closed in Go. However, since Gy is
clearly closed in GL(K, d), G’ is closed in GL(K, d) and therefore in
G. Let x—x* denote the natural homomorphism of G onto G/G'=G*.
Since G* is abelian, G*=T*V* where T* and V* are connected sub-
groups, T* being compact and V* simply connected and T*NV*
={e*}. Let N be the complete inverse image of V* in G. Since
N/G’=V* and G’ are both simply connected, N is simply connected
and G/N=T* is compact. Therefore by Lemma 5, G=A4N where 4
is compact, connected, and abelian and ANN is finite. Let s EANN.
Then o"=e for some r=1. Then ¢*&E V* and (0*)"=e*. Since V* is
simply connected and abelian, c*=e*. Hence ¢E€A4AMNG’. Since
X—exp X is a topological mapping of ¢’ onto G’, it follows that
6EG’, o'=e¢ implies c=e. Hence ANN= {e}. The corollary is
therefore proved.

INSTITUTE FOR ADVANCED STUDY

¢ This lemma was pointed out to me by Dr. G. D. Mostow.



