ON FAITHFUL REPRESENTATIONS OF LIE GROUPS

HARISH-CHANDRA

Let G and H be two connected Lie groups and ϕ a continuous homomorphism of H into the group of automorphisms of G. Then we define a new group $G \times_{\phi} H$ as follows. The elements of $G \times_{\phi} H$ are pairs (g, h) $(g \in G, h \in H)$ and group multiplication is defined by

$$(g_1, h_1)(g_2, h_2) = (g_1(\phi(h_1)g_2), h_1h_2).$$

Topologically $G \times_{\phi} H$ is taken to be just the Cartesian product of G and H. It is then easily proved that under this topology $G \times_{\phi} H$ is a Lie group. It is called the semidirect product of G and H under ϕ . The object of this note is to prove the following theorem.

THEOREM. Let G be a connected, simply connected solvable Lie group and H a connected Lie group which has a faithful representation. Let ϕ be any continuous homomorphism of H into the group of automorphisms of G. Then $G \times_{\phi} H$ has a faithful representation.

The special case of this theorem when H is semisimple is due to Cartan.¹

Let R be the field of real numbers and K the field of either real or complex numbers. Let G be a connected Lie group with the Lie algebra \mathfrak{g} and θ a representation of G over K of degree \dot{d} . Then we denote by $d\theta$ the representation of \mathfrak{g} given by²

$$d\theta(x) = \lim_{t\to 0} \frac{\theta(\exp tX) - I}{t} \qquad (X \in \mathfrak{g})$$

where $t \in R$ and I is the unit matrix of degree \dot{d} . Let $GL(K, \dot{d})$ denote the group of all nonsingular matrices of degree \dot{d} with coefficients in K. Any subgroup of $GL(K, \dot{d})$ will be called a linear group of degree \dot{d} . Let θ be the identity representation of a linear Lie group G with the Lie algebra \mathfrak{g} so that $\theta(x) = x$ ($x \in G$). Then $d\theta$ is a faithful representation of \mathfrak{g} and $\exp d\theta(X) = \theta(\exp X) = \exp X$ for any $x \in \mathfrak{g}$. Hence we may identify \mathfrak{g} with $d\theta(\mathfrak{g})$ under $d\theta$. \mathfrak{g} can therefore be regarded as a linear Lie algebra. In particular the Lie algebra of $GL(K, \dot{d})$ then

Received by the editors October 4, 1948, and, in revised form, February 11, 1949.

¹ Cartan, J. Math. Pures Appl. vol. 17 (1938) pp. 1-12. See also Malcev, C. R. (Doklady) Acad. Sci. URSS. vol. 40 (1943) pp. 87-89.

² For the precise definitions of the terms used in this paper see Chevalley, *Theory of Lie groups*, Princeton University Press, 1946.

consists of all matrices of degree \dot{d} with coefficients in K. We denote it by $\mathfrak{gl}(K, \dot{d})$. Given any subalgebra $\mathfrak{h} \subset \mathfrak{gl}(K, \dot{d})$, by the linear Lie group generated by \mathfrak{h} we mean the analytic subgroup of $GL(K, \dot{d})$ corresponding to \mathfrak{h} .

Let us call a matrix subtriangular if it has zeros on and below the the diagonal. First we state the following two well known lemmas.

LEMMA 1.3 Let \mathfrak{N} be the Lie algebra of all subtriangular $d \times d$ matrices over K and let G be the linear Lie group generated by \mathfrak{N} . Then $X \to \exp X$ is a topological mapping of \mathfrak{N} onto G. Also G consists of all matrices which have zeros below the diagonal and 1 everywhere on the diagonal.

LEMMA 2.4 Let G be a connected, simply connected solvable Lie group. Then every analytic subgroup of G is closed and simply connected.

From now on I adhere strictly to the notation of my paper, Faithful representations of Lie algebras, which will be quoted as FRL.

LEMMA 3. Let $\mathfrak{L}, \mathfrak{R}, \mathfrak{D}$ be as in Lemma 1 of FRL. We construct the faithful representation θ of $\mathfrak{L}+\mathfrak{D}$ as described there. Then for any $Y_1, \dots, Y_s \in \mathfrak{L}$ and $D_1, \dots, D_s \in \mathfrak{D}$,

- (1) $\exp \theta(Y_1) \cdot \cdot \cdot \exp \theta(Y_s) \neq I$ unless $\exp Y_1 \cdot \cdot \cdot \exp Y_s = I''$,
- (2) $\exp \theta(D_1) \cdot \cdot \cdot \exp \theta(D_s) = I$

if and only if $\exp D_1 \cdot \cdot \cdot \exp D_a = I'$,

where I, I', and I" are unit matrices of suitable degrees.

If we use the notation of the proof of Lemma 1 of FRL, (1) follows immediately from the fact that $\mathfrak{A}/\mathfrak{X}\cong\mathfrak{A}^*/\mathfrak{X}^*$ where $\mathfrak{X}^*=\mathfrak{X}/\mathfrak{X}_0$. Now we prove (2). Put $\omega^*(X)=(\omega(X))^*$ for $X\in\mathfrak{X}$. Then it is easily proved by induction on s that for any $D\in\mathfrak{D}$

$$\{\theta(D)\} \circ \omega^*(X) = \omega^*(D \circ X), \qquad s \ge 1.$$

Hence $(\exp \theta(D))\omega^*(X) = \omega^*((\exp D)X)$. Also since $\theta(D) = d_D^*$ is a derivation of $\mathfrak{A}^* = \mathfrak{A}/\mathfrak{X}_0$, $\exp \theta(D)$ is an automorphism of \mathfrak{A}^* . Put $Y_{\mathbf{X}} = (\exp D_1) \cdot \cdot \cdot \cdot (\exp D_{\mathbf{z}}) X \ (X \in \mathfrak{L})$. Then if

$$\exp \theta(D_1) \cdot \cdot \cdot \exp \theta(D_s) = I_s$$

 $\omega^*(Y_X) - \omega^*(X) = 0$ for every $X \in \mathbb{R}$. Hence $\omega(Y_X - X) \in \mathfrak{X}_0 \subset \mathfrak{X}$. Therefore $\pi\omega(Y_X - X) = Y_X - X = 0$. Since this is true for every X,

³ Birkhoff, Ann. of Math. vol. 38 (1937) pp. 526-532.

⁴ Chevalley, Ann. of Math. vol. 42 (1941) pp. 668-675.

⁵ Harish-Chandra, Ann. of Math. vol. 50 (1949) pp. 68-76.

 $(\exp D_1) \cdot \cdot \cdot (\exp D_s) = I'$. The converse is obvious. Hence the lemma is proved.

LEMMA 4. Let G be a connected, simply connected solvable Lie group with Lie algebra $\mathfrak g$. Let $\mathfrak N$ be the maximal nilpotent ideal of $\mathfrak g$. Then G has a faithful representation ψ such that $d\Psi(X)$ is nilpotent for every $X \in \mathfrak N$.

By Corollary 1 of FRL we can find a faithful representation ρ_0 of g such that $\rho_0(X)$ is nilpotent for every $X \in \Re$. We can therefore choose, if necessary, a new base in our representation space such that with respect to this base the matrix representing $\rho_0(X)$ is subtriangular for every $X \in \mathbb{N}$. Now consider the factor algebra $\mathfrak{q}/\mathfrak{N}$ which is abelian and hence nilpotent. By the same corollary it follows that $\mathfrak{g}/\mathfrak{N}$ has a faithful representation by nilpotent matrices. Hence g has a representation ρ_1 such that the kernel of ρ_1 is \mathfrak{N} and $\rho_1(X)$ is nilpotent for all $X \in \mathfrak{g}$. We can again arrange that $\rho_1(X)$ is subtriangular for all X. Put $\rho = \rho_0 + \rho_1$, where + denotes direct sum. Since G is simply connected, there exist representations ψ_0 and ψ_1 of G such that $d\psi_0 = \rho_0$, $d\psi_1 = \rho_1$. Put $\psi = \psi_0 + \psi_1$. Then $d\psi = \rho$. Let N be the analytic subgroup of G corresponding to \mathfrak{N} . Then from Lemma 2, N is a closed invariant subgroup. Consider $\psi(N)$. It is clear that $d\psi(Y) = \rho_0(Y) + \rho_1(Y)$ is subtriangular for all $Y \in \Re$. Hence from Lemmas 1 and 2 it follows that the linear Lie group $\psi(N)$ generated by $d\psi(\mathfrak{N})$ is simply connected. Since $d\psi$ is an isomorphism, $\psi(N)$ is locally isomorphic to N. Therefore since $\psi(N)$ is simply connected, ψ maps N isomorphically. Similarly we prove that $\psi_1(G)$ is simply connected. It is clear that the kernel of ψ_1 contains N. Hence ψ_1 defines a representation ψ^* of G/N given by $\psi^*(x^*) = \psi_1(x)$ where $x \rightarrow x^*$ is the natural homomorphism of G onto $G/N = G^*$. Since $d\psi^*$ is an isomorphism, the kernel of $d\psi_1 = \rho_1$ being \Re , it follows from the simple connectivity of $\psi^*(G^*) = \psi_1(G)$ that ψ^* is an isomorphism. Hence the kernel of ψ_1 is exactly N. Let D be the kernel of ψ . Then D is contained in the kernel of ψ_1 which is N. Also since ψ is faithful on N, $D \cap N = \{e\}$ where e is the unit element of N. Hence $D = \{e\}$ and ψ is a faithful representation. Also $d\psi(X)$ is nilpotent for every $X \in \mathfrak{N}$.

Now we come to the proof of the theorem. Let $\mathfrak g$ be the Lie algebra of G and $\mathfrak N$ the maximal nilpotent ideal of $\mathfrak g$. By Lemma 4, G has a faithful representation. Hence we may assume that G is a linear Lie group such that every element of $\mathfrak N$ is nilpotent. We keep to the notation of Lemma 3 except that $\mathfrak L$ is replaced by $\mathfrak g$. Let $\mathfrak h$ be the Lie algebra of H. Define a homomorphism $d\tau$ of $\mathfrak h$ into $\mathfrak D$ as follows. Let

Aut (G) be the group of automorphisms of G. Then Aut (G) is a Lie group with a Lie algebra \mathfrak{A} . It is well known that there exists an isomorphism λ of \mathfrak{A} onto \mathfrak{D} such that

$$(\exp A) \exp X = \exp ((\exp \lambda(A))X)$$

for any $A \in \mathfrak{A}$ and $X \in \mathfrak{g}$. We put $d\tau = \lambda o d\phi$ where $d\phi$ is the homomorphism of \mathfrak{h} into \mathfrak{A} induced by ϕ . Then for any $P_i \in \mathfrak{h}$, $1 \leq i \leq r$,

$$\phi(\exp P_1 \cdot \cdot \cdot \exp P_r) \exp X = \exp ((\exp d\tau(P_1) \cdot \cdot \cdot \exp d\tau(P_r))X).$$

Let e and e' denote the identity elements of G and H respectively. Suppose $\exp P_1 \cdot \cdot \cdot \exp P_r = e'$. Then clearly

$$\exp X = \phi(\exp P_1 \cdot \cdot \cdot \exp P_r) \exp X$$
$$= \exp ((\exp d\tau(P_1) \cdot \cdot \cdot \cdot \exp d\tau(P_r))X).$$

Since this is true for every $X \in \mathfrak{g}$,

$$\exp d\tau(P_1)\cdot\cdot\cdot\exp d\tau(P_r)=I'.$$

Hence we can define a representation τ of H by the rule

$$\tau(\exp P_1 \cdots \exp P_r) = \exp d\tau(P_1) \cdots \exp d\tau(P_r) \quad (P_1, \cdots, P_r \in \mathfrak{h}).$$

Put $d\psi = \theta \circ d\tau$. Then $d\psi$ is a representation of \mathfrak{h} . Suppose $\exp P_1 \cdots \exp P_r = e' (P_1, \cdots, P_r \in \mathfrak{h})$. Then

$$\tau(\exp P_1 \cdot \cdot \cdot \exp P_r) = \exp d\tau(P_1) \cdot \cdot \cdot \exp d\tau(P_r) = I'$$

and from Lemma 3

$$\exp d\psi(P_1)\cdot\cdot\cdot\exp d\psi(P_r)=I.$$

Hence we can again define a representation ψ of H by putting

$$\psi(\exp P_1 \cdots \exp P_r) = \exp d\psi(P_1) \cdots \exp d\psi(P_r) \quad (P_1, \cdots, P_r \in \mathfrak{h}).$$

Also since G is simply connected there exists a representation χ of G such that $d\chi(X) = \theta(X)$ for every $X \in \mathfrak{g}$. Hence

$$\chi(\exp Y_1 \cdot \cdot \cdot \exp Y_r) = \exp \theta(Y_1) \cdot \cdot \cdot \cdot \exp \theta(Y_r) \ (Y_i \in \mathfrak{G}, 1 \leq i \leq r).$$

From Lemma 3 it follows that χ is faithful.

Consider the mapping μ of $G \times_{\phi} H$ defined by $\mu(g, h) = \chi(g) \psi(h)$. We claim that μ is a representation. For any $P \in \mathfrak{h}$ and $X \in \mathfrak{g}$ consider

$$\psi(\exp P)\chi(\exp X)(\psi(\exp P))^{-1} = \exp d\psi(P) \exp \theta(X) \exp (-d\psi(P))$$
$$= \exp \theta(D) \exp \theta(X) \exp (-\theta(D))$$

where $D = d\tau(P)$. Now for any two elements A, $B \in \mathfrak{gl}(K, d)$,

$$\exp A \exp B \exp (-A) = \exp ((\exp \operatorname{ad} A)B)$$

where ad A is defined as in FRL. Since $[\theta(D), \theta(Y)] = \theta([D, Y])$ = $\theta(DY)$ for any $Y \in \mathfrak{g}$, it follows immediately that

$$\exp \theta(D) \exp \theta(X) \exp (-\theta(D)) = \exp \theta((\exp D)X)$$

$$= \exp \theta(\tau(\exp P)X)$$

$$= \chi(\exp \tau(\exp P)X)$$

$$= \chi(\phi(\exp P) \exp X).$$

Since any $h \in H$ can be written in the form $\exp P_1 \cdot \cdot \cdot \exp P_r$, $P_i \in h$, $1 \le i \le r$, $r \ge 1$, we get

$$\psi(h)\chi(\exp X)(\psi(h))^{-1} = \chi(\phi(h) \exp X).$$

Similarly since every $g \in G$ can be written as $\exp Y_1 \cdot \cdot \cdot \exp Y_r$, $Y_i \in \mathfrak{g}$, $1 \le i \le r$, $r \ge 1$, we have

$$\psi(h)\chi(g)(\psi(h))^{-1} = \chi(\phi(h)g).$$

Therefore

$$\mu((g_1, h_1)(g_2, h_2)) = \mu(g_1\phi(h_1)g_2, h_1h_2) = \chi(g_1\phi(h_1)g_2)\psi(h_1h_2)$$

$$= \chi(g_1)\chi(\phi(h_1)g_2)\psi(h_1)\psi(h_2)$$

$$= \chi(g_1)\psi(h_1)\chi(g_2)\psi(h_2) = \mu(g_1, h_1)\mu(g_2, h_2).$$

Since μ is clearly a continuous mapping it is a representation of $G \times_{\phi} H$. By hypothesis H has a faithful representation ν_0 . Define a representation ν of $G \times_{\phi} H$ by $\nu(g, h) = \nu_0(h)$ and put $\xi = \mu + \nu$. Suppose (g, h) belongs to the kernel of ξ . Then since $\xi(g, h) = \mu(g, h) + \nu_0(h) = \chi(g)\psi(h) + \nu_0(h)$ and since ν_0 is faithful on H, h = e'. Hence g belongs to the kernel of χ . But as χ is faithful on G, g = e. Therefore (g, h) = (e, e') and ξ is faithful on $G \times_{\phi} H$.

COROLLARY (MALCEV). A connected solvable Lie group G has a faithful representation if and only if G=NA, where N is a closed, connected, simply connected invariant subgroup and A is a connected, compact abelian subgroup such that $N \cap A = \{e\}$.

Suppose G = NA. For any $a \in A$ let $\phi(a)$ denote the automorphism of N given by $\phi(a)n = ana^{-1}$ $(n \in N)$. Then it is easily seen that $(n, a) \rightarrow na$ is an isomorphism of $N \times_{\phi} A$ onto G. Since A is compact, it has a faithful representation. Hence by the above theorem it follows immediately that G has a faithful representation.

In order to establish the converse we make use of the following lemma which follows easily from the results of Chevalley.4

LEMMA 5.6 If G is a connected solvable Lie group and N a closed, connected invariant subgroup such that G/N is compact, then there exists a compact connected abelian subgroup A of G such that G=AN and $A \cap N$ is finite.

Returning to the corollary, suppose G is linear. Since \mathfrak{g} is solvable. we deduce in the usual way that every element $X \in [\mathfrak{a}, \mathfrak{a}] = \mathfrak{a}'$ is nilpotent and therefore may be assumed to be subtriangular. Therefore by Lemmas 1 and 2 the group G' generated by \mathfrak{g}' is simply connected. Let \dot{d} be the degree of G and G_0 the group of all matrices in $GL(K, \dot{d})$ which have zero below the diagonal and 1 everywhere on the diagonal. By Lemma 2, G' is closed in G_0 . However, since G_0 is clearly closed in $GL(K, \dot{d})$, G' is closed in $GL(K, \dot{d})$ and therefore in G. Let $x \rightarrow x^*$ denote the natural homomorphism of G onto $G/G' = G^*$. Since G^* is abelian, $G^* = T^*V^*$ where T^* and V^* are connected subgroups, T^* being compact and V^* simply connected and $T^* \cap V^*$ = $\{e^*\}$. Let N be the complete inverse image of V^* in G. Since $N/G' = V^*$ and G' are both simply connected, N is simply connected and $G/N \cong T^*$ is compact. Therefore by Lemma 5, G = AN where A is compact, connected, and abelian and $A \cap N$ is finite. Let $\sigma \in A \cap N$. Then $\sigma^r = e$ for some $r \ge 1$. Then $\sigma^* \in V^*$ and $(\sigma^*)^r = e^*$. Since V^* is simply connected and abelian, $\sigma^* = e^*$. Hence $\sigma \in A \cap G'$. Since $X \rightarrow \exp X$ is a topological mapping of \mathfrak{g}' onto G', it follows that $\sigma \in G'$, $\sigma^r = e$ implies $\sigma = e$. Hence $A \cap N = \{e\}$. The corollary is therefore proved.

INSTITUTE FOR ADVANCED STUDY

⁶ This lemma was pointed out to me by Dr. G. D. Mostow.