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In three-dimensional space set up a cylindrical coordinate system

(r, $, z). The Hahn-Mazurkiewicz theorem characterizes Peano

spaces (locally connected metric (compact) continua) as the continu-

ous images of the closed unit interval I on the z-axis. In this note we

obtain an extension theorem for Peano spaces (henceforth called P-

spaces) based upon this characterization.

We first define a dendrite L. To this end order the rationals in the

interior of I into a sequence {(0, 0, r,-}. For each pair of positive

integers i, j, let Lij denote the closed line segment joining (0, 0, r<)

and (lA'+j, l/i+j, Ti). Let P_i,y, Loj denote line segments from

(0, 0, 0) and (0, 0,1) parallel to and the same length as Lltj for every j.

Then the dendrite L is defined to be the union of I and all the seg-

ments Li,j. Let a,-,,- be the end point of Lij which is not on I. We shall

refer to Oij as the free end of Lij.

Denote by D the sequence {(0, 0, di)} consisting of the dyadic

rational points interior to I enumerated in the usual way: <fi=l/2,

<f2=l/22, d3 = 3/2i, • ■ ■ . The following lemma is then easily estab-

lished.

Lemma. Let Q* be any finite or countable subset of I. Then there exists

a homeomorphism h(T)=I such that A(0)=0, A(l) = l, h(Q* — 0 — 1)

CD.

The result of this note may now be stated as follows.

Theorem. Let N be a P-space properly contained in the P-space P,

and let g(T) = N be any continuous transformation. Then there exists a

homeomorphism h{I)=I and a continuous transformation f{L)—P

with the following properties:

(i) on I,f=gh

(ii) f-\P-N)CL-I.
In addition there exists a subset L* of L, consisting of the union of I

and a certain subcollection L*j of the line segments Lij such that

(iii) f(L*~=I)=P=N,
and

(iv) if afj is the free end of L*, for each i, j while A* is the union of

the points a*j, then f-1(P-N)=L*-I-A*.
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Proof. The proof will be given only for the nontrivial case in which

N is nondegenerate. Let T(I)=P be any continuous transformation.

Then the open set G=T~1(P — N) is the union of a collection of open

intervals {«,) having the respective left and right end points {q,}

and {ti}. It is convenient to assume that this sequence of intervals

has been enumerated in order of decreasing diameters.

For each integer i for which a point q, has been denned we choose

a point q* in g~1T(qi). It does not follow that qi^qj implies q* 5*q*.

However, there are at most a countable number of <?< which have the

same q*. We denote these by g<,i, g<,2, • • • in order of decreasing

diameters of the corresponding co,-. Thus <Zi* = <z*j for all i. Denote by

Q* the set of all points q* thus defined, and let k(I) = I be the homeo-

morphism given by the lemma, and h(I)=I the homeomorphism

given by h = k~1. For each pair of integers i, j for which a point

has been defined, let mij be the component of G which has q,,j as its

left end point. Set d* = k(q*) for each i. Then, for each pair of integers

i, j for which a point g<,y has been defined, denote by L*3 the line

segment of L which has the point d* as its foot, and the point ojy

as its free end.

The desired transformation/(P) =P is now defined as follows:

(a) f{I)=gh{I)=N. Thus (i) is satisfied.

(b) f(Lij) =f(di) for every Lif]- which is not an L*}.

(c) /(P<*) = T(ü)i,j) in such a way that f(d?) agrees with the

definition in (a), /(a(*) = T{u,>), and/(P4* -df-afj) = r(co,-,y). Here,

of course, ttj denotes the right end point of »,-,/.

It is easily seen that the transformation/(P) =P satisfies all of

the required conditions.

In the important special case where N is a simple arc we may

choose g(I)=N as a homeomorphism and obtain the following

corollary.

Corollary. If N is a simple arc in P, then f(L) = P may be so de-

fined that f(I) = N is topological.

This theorem may be restated as a decomposition theorem for

the P-space P, where each of the sets/(Py) is regarded as a P-space.

Recent results of O. G. Harrold1 should not be overlooked in the light

of this theorem.
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1 See O. G. Harrold, Duke Math. J. vol. 6 (1940) pp. 750-752. Also Bull. Amer.
Math. Soc. vol. 48 (1942) pp. 561-566.


