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1. Introduction. An element a of a ring R is said to be regular

if and only if there exists an element x of R such that axa = a. The

ring R is regular if and only if each element of R is regular. The con-

cept of a regular ring was introduced by von Neumann [5, 6]1 who,

however, required also that a regular ring have a unit element.

Unless otherwise stated, the word ideal shall mean two-sided ideal,

and an ideal in R will be said to be regular if and only if it consists

entirely of regular elements of R. It is easy to see that a regular ideal

A in R is itself a regular ring. For if a(EA, there exists an element x of

R such that axa = a. It follows that axaxa = a and xax^A, so a is

regular in the ring A.

We shall show that the join of all regular ideals in an arbitrary

ring R is a regular ideal, and hence that there exists a unique maxi-

mal regular ideal M = M(R) in R. The purpose of this note is to estab-

lish a few fundamental properties of M(R). Among these are the fol-

lowing "radical-like" properties: (i) M(R/M{R)) = 0, (ii) if B is an

ideal in R, then M(B) =B(~\M(R), (iii) if Rn is the complete matrix

ring of order n over R, then M(Rn) = (M(R))n. A special case of this

last result is that R„ is regular if and only if R is regular. This was

proved by von Neumann [6], but we shall include a very simple

proof of this fact.

It is well known that every regular ring has zero (Jacobson) radical

/. For the rest of the introduction it is assumed that R is a ring such

that R/J is regular. We note that this condition is satisfied if, for

example, the right ideals of R satisfy the descending chain condition.

Thus M=R if and only if J = 0, and hence, in some sense, M may be

considered as an "anti-radical." It is shown in §4 that M = 0 if and

only if R is bound to its radical / in the sense of Marshall Hall [2].

Moreover, in §5 it is proved that, under the descending chain condi-

tion for right ideals, R is expressible as a direct sum

R = M + M *

where M* is the ideal consisting of all elements a of R such that aM

= Ma = 0. It follows that M is semi-simple and M* is bound to its

radical, and thus this direct sum decomposition coincides with one
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obtained by Marshall Hall [2].

2. Existence and simple properties of M{R). Let R be an arbitrary

ring, and a an element of R. The following lemma plays a central

role in several of our proofs:

Lemma 1. Ifyis an element of R such that a —ay a is regular, then a is

regular.

Proof. If a — aya is regular, there exists an element 2 of R such that

(a — aya)z(a — aya) = a — aya.

If we set x = z — zay—yaz-\-yazay+y, a simple calculation shows that

axa=a, and thus o is regular, which completes the proof.

We shall indicate by (a) the principal ideal in R generated by a.

We now prove the following theorem.

Theorem 1. If M is the set of all elements a of R such that (a) is

regular, then M is an ideal in R.

Proof. If z£Af and t£.R, then zt£M since (zt)C.(z). Similarly,

te£Af. If 2, w(EM and a£(2-w), then a = u— v for some u in (z)

and v in (w). Since (2) is regular, u — uru for some element r of R. Then

a — ara = u — v — (u — v)r(u — v) = — v + urv + vru — vrv.

Since dGW, this shows that a — ara£(w) and is therefore regular.

Lemma 1 now implies that a is regular, and hence 2 —w£Af. This

completes the proof of the theorem.

It is clear that M, being the join of all regular ideals in R, and being

itself regular, is the unique maximal regular ideal in R. It may be

remarked that the proof of the above theorem is analogous to the

proof of Theorem 1 in Brown and McCoy [l].

We shall next prove the following theorem.

Theorem 2. If R is any ring, M(R/M(R))=0.

Proof. Let ä denote the residue class modulo M(R) which con-

tains the element a of R. If b~EM(R/M(R)) and aG(i>), then äG(5).

Since (5) is a regular ideal in R/M(R), ä is regular. If ä = äxä, a

— axa(EM(R), therefore a—axa is regular and Lemma 1 implies that

a is regular. This shows that every element of (b) is regular, and

hence &GAf(i?). Thus 5 = 0, completing the proof.

Suppose now that B is an ideal in R, and let b be an element of B

which generates a regular ideal (»)' in the ring B. Let (b) be the ideal

in R generated by the element b, and let
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c = nb + rb + bs + ]T) (n an integer; r, j, r<, j< in R)

be any element of (&). Since & is regular in B we have b = bb]b for

some &i in B. Hence

and thus c£(&)'; therefore (b) is regular since it coincides with (b)'.

This shows that if bGM(B), then b^BC\M(R). Conversely, if

b(EBf~\M(R), then b is an element of B which is regular in R, and

it is easy to see that b is therefore regular in the ring B. Since

BC\M{R) is a regular ideal in the ring B, it follows that BC\M(R)

C.M(B). We have therefore proved the following theorem.

Theorem 3. // B is an ideal in R, then M(B) = B(~\M{R.).

3. The maximal regular ideal of a complete matrix ring. In this

section we shall prove the following theorem.

Theorem 4. // Rn is the complete matrix ring of order n over R, then

First we give an elementary proof of the special case of this result

in which R itself is regular, and therefore R = M(R). This result,

under the assumption that R has a unit element, is due to von

Neumann [ö].

Lemma 2. If R is a regular ring, then Rn is a regular ring.

The proof of this is in two steps, the first being the proof for n = 2,

and the second the extension to arbitrary n. If r£2?, let us denote by

r' an element of R such that rr'r = r. Now let

and denote A —AXA by B, a simple calculation shows that

c = nb + (rbbjb + bQbibs) + £ ('.WOW*),

M(Rn) = (M(R))u.

be an arbitrary element of Rz. If we set

for suitable choice of elements g, h, i of R. If
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then

C = B - BYB

for some element k of R. Finally, if

we see that

C-CZC = 0.

This means that C is regular and hence, by Lemma 1, B is regular.

Again applying Lemma 1, we see that A is regular, and this com-

pletes the proof for n = 2.

Since (i?2)2=i?4, it follows from the case just proved that R* is

regular, and similarly R& is regular for any positive integer k. If

now n is an arbitrary positive integer, choose k so that 2* = «. If

AEiRn, let A\ be the matrix of R& with A in the upper left-hand

corner and zeros elsewhere. Now, as an element of Rf, A i is regular,

that is, there exists an element

of 2?2* such that AiXAi=Ai. However, this implies that .<42L4=.<4,

and hence A is regular. The proof of the lemma is therefore complete.

By the lemma just proved, (M(R))n is a regular ideal in Rn, and

hence (M(R))nQM(Rn). Conversely, let A be a matrix in M(R„),

and let a,y be a fixed element of A. Since (.4) is a regular ideal, there

exists an element X of Rn such that A =AXA=AXAXA, and there-

fore

for suitable elements tpq, spq of R. But it is easy to see* that there

exists a matrix of (A) with tpqapqspq in (1, 1) position and zeros else-

where, and hence an element of (A) with ay in (1,1) position and

zeros elsewhere. Now if b is any element of the principal ideal in 2?

2 See, for example, Lemma 5 of [l].
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generated by a,-,-, it is clear that there exists an element B of (A) with

b in the (1,1) position and zeros elsewhere. Furthermore, we have

BYB=B for suitable choice of Fin Rn since (.4) is regular. But this

implies that bynb = b, and hence b is regular. This shows that ai}

£:M(R), and hence that M(R„)Q(M(R))n, completing the proof of

the theorem.

4. Some additional properties of M(R). By the annihilator B* of

an ideal B in a ring R is meant the ideal consisting of all elements a

of R such that aB=Ba = 0.

Theorem 5. // M is the maximal regular ideal of a ring R and J is

the Jacobson radical of R, then MC\J = 0, JCZM*, MQJ*, and

M(~\M* = 0. Furthermore, J is the radical of the ring M* and M is the

maximal regular ideal of the ring J*.

Proof. Since / contains no nonzero idempotent element [3, p. 305],

MC\J=Q. From this it follows that MJ=JM=Q, so JCM* and
MQJ*. If a^MC\M*, then a=axa for some x. But aEM and xa

£M*, hence a(xa) =0 and M(~\M* = 0. The last sentence of the theo-

rem follows frqm the observation of Perlis [4] that if B is any ideal in

R, the radical of the ring B is just BC\J, and from the analogous

Theorem 3.

Following Marshall Hall [2], we may say that a ring R is bound

to its radical J if and only if J*C1J.

The next theorem gives, for a class of rings including all those whose

right ideals satisfy the descending chain condition, a necessary and

sufficient condition that the maximal regular ideal be the zero ideal.

Theorem 6. If R is a ring such that R/J is regular, then M=0 if

and only if R is bound to J.

Proof. If R is bound to J, it follows that M=Q even without the

condition that R/J be regular. For M(~\J=0, and this implies, as in

Theorem 5, that MCZJ*CZJ. Hence M=0.

Conversely, let R/J be regular and Af=0. We show first by induc-

tion that jr\J*z = 0. Suppose that j£J and that j= ]C?=i a*°i where

a,-, bi are in J*. It must be proved that j = 0. In the regular ring

R/J, äi is regular, so R contains x{ such that a<—a.XjC.^.G/- Since

o,G/*, we have

n n

(1) j = 22 (aiXiai + ji)b{ = 22 atXiUibi.
i~l i-l

If »= 1, this implies that j = aiXiafa = a\X\j = 0 since <Zi£/*. If n?±l,



170 BAILEY BROWN AND N. H. McCOY [April

then

n-1

Thus by (1)

n-l

j = zZ OiXiOib, + anx, (a-iXi — anx„)a{bi.

But the induction hypothesis asserts that if j = 20l-i °idi and c<, d(

are in 7*, then j = 0. Since (a**,- —a^c»)a< and £>< are in /*, it follows

that j = 0, and we have proved that Jf\J*2 = 0. This implies, however,

that J*2 is a regular ideal. For if a£/*s, then in the regular ring R/J,

the element ä is regular, that is, for some x, a — axa(E.J(~\J*2 = 0, so a

is regular. Hence J*2QM = 0, from which it follows that J*QJ since

the radical contains all nil ideals [3, p. 304]. Thus R is bound to / and

the proof is complete.

5. A decomposition theorem. In this section we point out the role

played by the maximal regular ideal M in a theorem of Hall [2], and

incidentally give a new proof of his result.

Lemma 3. If an ideal B in a ring R has a unit element e, then

Proof. The existence of a unit element in B implies that BC\B* = 0.

If x£R, then ex+xe^B and hence (ex+xe)e = e(ex+xe), from which

it follows that xe = ex and e is in the center of R. Thus the Peirce de-

composition

expresses each element x of R as a sum of elements ex of B and x — ex

of B*, and the desired result is established.

We remark that a right ideal / in the ring M is a right ideal in R.

For if oG^, rE-R, then ar£M, hence for some element y of R, aryar

= ar. But ryar(E.M, so ar^I. Thus / is a right ideal in R.

From this remark, it follows that if the descending chain condition

for right ideals holds in R, it holds also in M. In the presence of this

chain condition, regularity is equivalent to semi-simplicity. Hence M

has a unit element, and the first sentence of the following theorem is

implied directly by Lemma 3.

Theorem 7. // a ring R satisfies the descending chain condition for

right ideals, then

R = B + B*.

x = ex + (x — ex)
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R = M + M*.

The ring M is semi-simple and the ring M* is bound to its radical.

The semi-simplicity of M is implied by the regularity of M.

Since the maximal regular ideal of M* is zero by Theorem 3, and the

chain condition holds in M*, it follows from Theorem 6 that M* is

bound to its radical.

Hall has shown that a ring R satisfying the descending chain con-

dition for right ideals can be represented in a unique way as the direct

sum of a semi-simple ring and a ring which is bound to its radical.

The result just established shows that the semi-simple component is

precisely the maximal regular ideal M of R, and the bound com-

ponent is the annihilator of M.
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