SOME THEOREMS ON MEROMORPHIC FUNCTIONS

YOSHITOMO OKADA

Let $f(z)$ be an integral function of finite order $\rho \geqq 0$, and let $n(r)$ denote the zeros of $f(z)$ in $|z| \leqq r$. Set

$$
M(r, f)=\max _{|z| \leq r}|f(z)| .
$$

P6lya ${ }^{1}$ proved

$$
\lim _{r \rightarrow \infty} \frac{\log M(r, f)}{n(r)}<\infty
$$

if ρ is not an integer, and Shah ${ }^{2}$ proved

$$
\liminf _{r \rightarrow \infty} \frac{\log M(r, f)}{n(r) \phi(r)}=0
$$

if $f(z)$ is a canonical product of genus p such as $\rho=p$, and $\phi(x)$ is any positive continuous nondecreasing function of a real variable x such that $\int_{\alpha}^{\infty} d x / x \phi(x)$ is convergent.

In this paper, some similar theorems will be obtained for meromorphic functions.

Let

$$
\begin{equation*}
F(z)=f(z) / g(z) \tag{1}
\end{equation*}
$$

be a meromorphic function of finite order, where

$$
\begin{aligned}
f(z) & =\prod_{n=1}^{\infty} E\left(\frac{z}{a_{n}}, p\right) \\
& =\prod_{n=1}^{\infty}\left(1-\frac{z}{a_{n}}\right) \exp \left(\frac{z}{a_{n}}+\frac{1}{2}\left(\frac{z}{a_{n}}\right)^{2}+\cdots+\frac{1}{p}\left(\frac{z}{a_{n}}\right)^{p}\right), \\
g(z) & =\prod_{n=1}^{\infty} E\left(\frac{z}{b_{n}}, q\right) \\
& =\prod_{n=1}^{\infty}\left(1-\frac{z}{b_{n}}\right) \exp \left(\frac{z}{b_{n}}+\frac{1}{2}\left(\frac{z}{b_{n}}\right)^{2}+\cdots+\frac{1}{q}\left(\frac{z}{b_{n}}\right)^{q}\right),
\end{aligned}
$$

these being canonical products of genera p, q and of orders ρ_{1}, ρ_{2}, respectively. Let s be the genus of (1), that is $s=\max (p, q)$, and de-

[^0]note the number of the totality of a_{1}, a_{2}, \cdots and b_{1}, b_{2}, \cdots in $|z| \leqq r$ by $N(r)$. Moreover set
$$
M(r, F)=M(r)=\max _{|z| \leq r}|F(z)|
$$

Then we have the following theorems:
Theorem I. If for any given meromorphic function (1) of finite order

$$
\max \left(\rho_{1}, \rho_{2}\right)=s \geqq 0,
$$

then

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{1}{r N(r) \phi(r)} \int_{0}^{r} \log ^{+} M(t) d t=0 \tag{2}
\end{equation*}
$$

where $\phi(x)$ is any positive continuous nondecreasing function of a real variable x such that $\int_{\alpha}^{\infty} d x / x \phi(x)$ is convergent.

Theorem II. If for any given meromorphic function (1) of finite order $\max \left(\rho_{1}, \rho_{2}\right)$ is not an integer, then

$$
\begin{equation*}
\liminf _{r \rightarrow \infty} \frac{1}{r N(r)} \int_{0}^{r} \log ^{+} M(t) d t<\infty \tag{3}
\end{equation*}
$$

To prove these theorems we establish the lemma:
Lemma. For any given meromorphic function (1) of genus s, let c_{1}, c_{2}, \cdots denote the totality of a_{1}, a_{2}, \cdots and b_{1}, b_{2}, \cdots in $|z| \leqq r$. Then

$$
\begin{equation*}
\frac{1}{r} \int_{0}^{r} \log ^{+} M(t) d t \leqq h_{1} \sum_{n=1}^{\infty} \frac{r^{r+1}}{\left|c_{n}\right| \cdot\left(\left|c_{n}\right|+r\right)}, z \tag{4}
\end{equation*}
$$

when $s \geqq 1$; and for a number $k>1$,

$$
\begin{equation*}
\frac{1}{r} \int_{0}^{r} \log ^{+} M(t) d t \leqq h_{2} \sum_{n=1}^{\infty} \log \left(1+\frac{k r}{\left|c_{n}\right|}\right) \tag{5}
\end{equation*}
$$

when $s=0$.
Proof. Assume $s=\max (p, q) \geqq 1$. Since $s \geqq p$ and p is the genus of $f(z)$, for a certain polynomial $P(z)$ of degree $\leqq s$ we get

$$
f(z)=e^{P(z)} \prod_{n=1}^{\infty} E\left(\frac{z}{a_{n}}, s\right)
$$

[^1]whence
\[

$$
\begin{align*}
\log ^{+} M(r, f) & \leqq h_{3} r^{2}+\log ^{+} \prod_{n=1}^{\infty}\left|E\left(\frac{z}{a_{n}}, s\right)\right| \\
& \leqq h_{3} r^{2}+h_{4} \sum_{n=1}^{\infty} \frac{r^{++1}}{\left|a_{n}\right|^{*}\left(\left|a_{n}\right|+r\right)} \tag{6}\\
& \leqq h_{5} \sum_{n=1}^{\infty} \frac{r^{a+1}}{\left|a_{n}\right|^{*}\left(\left|a_{n}\right|+r\right)}
\end{align*}
$$
\]

Similarly

$$
\begin{equation*}
\log ^{+} M(r, g) \leqq h_{6} \sum_{n=1}^{\infty} \frac{r^{0+1}}{\left|b_{n}\right|^{*}\left(\left|b_{n}\right|+r\right)} \tag{7}
\end{equation*}
$$

Now, by the theory of meromorphic functions, we get

$$
\begin{equation*}
\frac{1}{r} \int_{0}^{r} \log ^{+} M(t) d t<C(k) T(k r, F), \tag{8}
\end{equation*}
$$

where $T(r, F)$ is the characteristic function of $F(z)$, and $C(k)$ depends on a number $k>1$ only, and also we have

$$
\begin{align*}
T(k r, F) & =T(k r, f / g) \leqq T(k r, f)+T(k r, g)+O(1) \tag{9}\\
& \leqq \log ^{+} M(k r, f)+\log ^{+} M(k r, g)+O(1)
\end{align*}
$$

Hence from (6), (7), (8), and (9) follows (4).
Next, assume $s=0$. Then by the same process we get (5).
Proof of Theorem I. By the lemma, when $s \geqq 0$ we get

$$
\begin{equation*}
\frac{1}{r} \int_{0}^{r} \log ^{+} M(t) d t \leqq h_{r^{2}+1} \int_{0}^{\infty} \frac{N(t)}{t^{0+1}(t+r)} d t ; \tag{10}
\end{equation*}
$$

for, when $s \geqq 1$, from (4) this is obviously seen, and when $s=0$, from (5) we have

$$
\begin{aligned}
\frac{1}{r} \int_{0}^{\infty} \log ^{+} M(t) d t & \leqq h_{2} \int_{0}^{\infty} \frac{k r N(t)}{t(t+k r)} d t \\
& \leqq k h_{2} \int_{0}^{\infty} \frac{r N(t)}{t(t+r)} d t
\end{aligned}
$$

On the other hand the integral function

$$
G(z)=\prod_{n=1}^{\infty} E\left(\frac{z}{c_{n}}, s\right)
$$

is of order $\rho=\max \left(\rho_{1}, \rho_{2}\right)$, since $c_{1}, c_{2}, \cdots \operatorname{are}$ composed of a_{1}, a_{2}, \cdots and b_{1}, b_{2}, \cdots, whose exponents of convergence are ρ_{1}, ρ_{2} respectively; and the genus of $G(z)$ is $s=\max (p, q)$, since $f(z)$ and $g(z)$ are of genera p and q respectively. Therefore by Shah ${ }^{4}$

$$
\liminf _{r \rightarrow \infty} \frac{1}{N(r) \phi(r)} r^{a+1} \int_{0}^{\infty} \frac{N(t)}{t^{*+1}(t+r)} d t=0
$$

for $\rho=s \geqq 0$. Hence by (10) we get (2).
Proof of Theorem II. The order and genus of integral function $G(z)$ are $\rho=\max \left(\rho_{1}, \rho_{2}\right)$ and $s=\max (p, q)$, respectively, as already seen, so that the exponent of convergence of $\left|c_{1}\right|,\left|c_{2}\right|, \cdots$ is ρ, and $\rho>0, s=[\rho]$, since ρ is not an integer.

Now set $\Phi(x)=h_{1} x^{-(s+1)} / 1+x^{-1}$ for $1<\rho$, and $\Phi(x)=h_{2} \log (1+k / x)$ for $0<\rho<1$. Then $\Phi(x)$ is a positive and decreasing function for $x>0$, and we have

$$
\Phi(x)<x^{-\rho+\eta} \quad(0<\eta<\rho-s)
$$

for all values of $x>0$ near $x=0$, and

$$
\Phi(x)<x^{-\rho-\eta} \quad(0<\eta<s+1-\rho)
$$

for all values of x sufficiently great. Therefore by Pólya ${ }^{5}$

$$
\liminf _{r \rightarrow \infty} \frac{1}{N(r)} \sum_{n=1}^{\infty} \Phi\left(\frac{\left|c_{n}\right|}{r}\right) \leqq \int_{0}^{\infty} \Phi\left(x^{1 / \rho}\right) d x<\infty .
$$

Hence from the lemma

$$
\liminf _{r \rightarrow \infty} \frac{1}{r N(r)} \int_{0}^{r} \log ^{+} M(t) d t \leqq \liminf _{r \rightarrow \infty} \frac{1}{N(r)} \sum_{n=1}^{\infty} \Phi\left(\frac{\left|c_{n}\right|}{r}\right)<\infty
$$

Tohoku University

[^2]
[^0]: Received by the editors October 22, 1948.
 ${ }^{1}$ G. Polya, Math. Ann. vol. 88 (1922) pp. 169-183.
 ${ }^{2}$ S. H. Shah, J. London Math. Soc. vol. 15 (1940) pp. 23-31.

[^1]: ${ }^{2}$ Hereafter we assume that h_{1}, h_{2}, \cdots are all some suitable fixed positive constants independent of r.

[^2]: ${ }^{4}$ Shah, loc. cit. pp. 26-30.
 ${ }^{5}$ P6lya, loc. cit., Theorem VI, pp. 173-174.

