
NONLINEAR NETWORKS. IV

R. J. DUFFIN

It may be well to point out explicitly that the networks considered

in this paper and in the preceding papers are definitely not arbitrary

nonlinear networks. Rather, it has been the aim to define nonlinear

networks which share the uniqueness properties of passive linear net-

works. Physical considerations suggest that such networks may be

aptly termed reliable networks.

The networks considered here consist of transformers with ferro-

magnetic cores (assumed to have negligible hysteresis) and Ohmic

resistors, arbitrarily interconnected to a set of generators. It is found

that as in the case of linear networks, under given electromotive

forces from the generators, the currents flowing are uniquely de-

termined after sufficient time has elapsed. Moreover, if the electro-

motive force is periodic, a unique, periodic current flow can exist.

The proof begins by integrating the network equations with re-

spect to time. It turns out that the integrated equations have the

same form as the network equations of a network containing linear

capacitors and nonlinear resistors. The differential permeability of a

ferromagnetic lies between positive limits; in the integrated equations

this is imaged by the condition that the differential resistance lies

between positive limits. The results stated are then easily deduced

from theorems developed in preceding papers for networks containing

such quasi-linear resistors [l, 2].1 (These papers will hereinafter be

referred to as I and III.)

In most applications of transformers the nonlinearity of the mag-

netization curve is an undesirable feature; however, the operation of

flux gate magnetometers, magnetic voltage regulators, frequency

multipliers, and magnetic amplifiers depends essentially on the non-

linearity.

Considerable space is devoted to the concepts of a transformer and

of a transformer network. In §1 the transformers are restricted to be

of a symmetrical type so that their properties can be determined fairly

rigorously from elementary considerations. The general transformer

is treated in §4 by means of the hypothesis of the magnetic network.

The concept of topologically coupled networks employed there will

be found quite interesting from an abstract point of view.

Presented to the Society, December 30, 1948; received by the editors November

16, 1948.
1 Numbers in brackets refer to the references cited at the end of the paper.
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1. Transformer networks. By a "transformer" is meant, in this

section, a set of coils of insulated wire wound in uniform layers on a

ring-shaped core of ferromagnetic material. A transformer network

is a collection of transformers and generators, the various coils and

generators being arbitrarily interconnected. Any conservative dis-

tribution of electric current in the network may be uniquely ex-

pressed as a superposition of cyclic currents i\, it, • • • , in flowing in n

closed circuits, provided these circuits are selected so as to be a

maximal linearly independent set. A positive direction of circulation

is arbitrarily assigned to each circuit. Let eT be the sum of the electro-

motive forces of the generators acting in the rth circuit. By Fara-

day's law of induction, er = dvr/dt where vr is the net magnetic flux

linked with the rth circuit. This assumes, of course, that these circuits

have no resistance. To express equations which relate electromotive

forces and currents, it is now necessary to express the magnetic

fluxes as a function of the currents.

The core of each transformer will be regarded as composed of a

number of co-axial sub-rings with "small" cross-sectional diameter.

By the assumed geometric symmetry it follows that the tangential

magnetic field H is the same at every point of the sub-ring. The sign

of H is determined by arbitrarily prescribing a direction of circula-

tion in the sub-ring. According to Ampere's law the line integral of

the tangential component of the magnetic field around a closed path is

given by the net current linked with the path. (This assumes the so-

called rational units.) If the circumference of the ring is s, then

sH= zZi^kik- Here C* is the net number of times the electric circuit

k links the sub-ring, the sense of linkage being determined by the

right-hand rule.

In ferromagnetics the flux density, B, satisfies the relation B=ß(H),

and if dB=fi'dH, then it is an experimental fact that the differential

permeability, satisfies the relation /i„ =p' = ^4. Here u„ is the

permeability of the vacuum. The positive constant A may be taken so

large that this relation is uniform for all sub-rings, and in addition,

that A't^Liv Let / be the magnetic flux flowing in the sub-ring

under consideration. Then f=aix( ^Ctitr1). Here a is the cross-

sectional area of the ring. For convenience in notation this last rela-

tion may be written/= U( zZ^th) where the function U has a deriva-

tive u lying between positive limits.

Let the sub-rings from all the transformers be placed in an ordered

sequence. The variables of the sub-rings will be distinguished by

superscripts. Thus the net flux linked with the rth electrical circuit

is vr= zZC'P- Introducing the relation for/' found above gives the
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desired relation

(1) vr= zZdu\zZrdik).

Differentiating with respect to time yields

(2) er = ZZZZ uCltiik = zZ L'rki'h

Here t* =dik/dt, and the matrix L'Tt is denned by first summing over

/; it may be called the inductance matrix. It is clear that L'rt is sym-

metric; moreover, it is semi-definite, as may be seen from the follow-

ing relation:

Relation (2) would of course remain valid if the core material were

replaced by a material having a constant permeability of unity. Let

the inductance matrix in this case be designated as Lrlc; then it is

clear from (3) that the following inequality holds:

The following observation is of interest in the theory of linear net-

works. Relation (3) shows that the inductance matrix L is semi-

definite; this, of course, has long been known. The same formula

shows that, conversely, any semi-definite matrix is the inductance

matrix of some network. To see this, note that L is here expressed in the

form L = K*K where K* is the transpose of the matrix K. On the other

hand, it is a relatively easy problem of matrix theory to show that

any semi-definite matrix permits of such a factoring. The observa-

tion that an arbitrary matrix K can be achieved; in principle, by a

suitable coil design completes the proof. (R. M. Foster has informed

the writer that he also discovered this result and presented it some

time ago in his classroom lectures. Foster's proof is quite simple.)

2. Quasi-linear replacements. The nonlinear relation (1) just

obtained between the flux vector, v, and the current vector, i, is of

the type which was called, in I and III, a quasi-linear replacement.2

2 The following corrective paragraph should be added to the paper Nonlinear

networks. Ill at the bottom of page 122:

"The one-dimensional mean value relation V{x) — V[y) = V'x— V'y remains valid

in n dimensions if V is interpreted as Vm=fllV'(i)d6. Here 8 is a scalar and i=y

+$(x —y). Clearly Vm is a symmetric matrix. Moreover, integrating (iii) with respect

to 8 shows that Vm satisfies (iii). Thus Vm satisfies the conditions (ii) and (iii) on V,

so in what follows the subscript m is deleted. While this notation causes some am-

biguity, it is precisely the notation employed in Nonlinear networks. I."

(3) £ £ Lrkirik = lZ u(JZcii'r)2 = 0.

(4) A'1 £ £ Lrkirik = 2 2Z Lrkirik ̂̂ EE Lr#r*L
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Consider, then, an abstract transformation, i>= V(i), of an w-dimen-

sional vector space with corresponding differential transformation,

dv = V'di, where V is the matrix of differential coefficients. If L is a

symmetric semi-definite matrix, the transformation V(i) is a quasi-

linear replacement of the linear transformation Li if:

(i) F(0)=0;
(ii) V'(i) exists for all i as a symmetric matrix;

(iii) there is a positive constant, A, such that for all vectors i and

2, A-^Lz, z) =(F'*, 2) ZA(Lm, z).

In the last line the standard notation for the inner product has

been employed; that is, if x and y are two vectors, then (x, y) = £x*yt.

The following simple consequence will be needed later:

Lemma. If V(i) is a quasi-linear replacement of Li, then so also is

Vi(i) <m V(i+k) — V(k) where k is a constant vector.

To indicate the nature of a quasi-linear transformation, several of

its properties will now be mentioned: If M is the manifold determined

by vectors of the form Li, and if k is any vector perpendicular to this

manifold, then V(i+k) = V(i). All vectors of the form V{i) are con-

tained in M. If w is in M, the relation v= V{i) has a unique solution

for * in M, i=W(v). Moreover, the domain of W may be extended so

that it also is a quasi-linear replacement of Li. Proofs of these state-

ments are not difficult and are contained essentially in I and III.

3. Transformer resistor networks. To obtain the equations defin-

ing the flow of current in a general network containing linear trans-

formers, linear resistors, and linear capacitors, it is simply necessary

to add voltage drops due to the resistors and capacitors to the equa-

tion already obtained for the inductive voltage drops. It is con-

venient to introduce the vector y of electric charge, which is such that

i = y'. Then the general network equations are

(5) Ly" + Ry' + Sy = e.

Here R is the matrix of resistors, its diagonal elements, say Rkk,

being the total resistance in the kth. circuit. The off-diagonal, P&r,

has magnitude equal to the common resistance of the circuits k and

r, and its sign depends on the relative directions assigned to the cir-

cuits r and k. The formalism developed in §1 may be adapted to prove

these and other properties of R. Interpret C'r as the incidence matrix

between the branches j and the circuits r of the graph. Thus, C{ — 1

if the branch j occurs in the rth circuit and their senses agree, and

C} = — 1 if their senses disagree. If the branch j does not occur in the
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rth circuit, Csr = 0. In relation (1) interpret vr as the net voltage drop

across the resistors of the rth circuit, and interpret U' as the re-

sistance of thejth branch. Then it may be seen from relation (3) that

R is semi-definite. It also follows from (3) that if none of the branches

have zero resistance, R is definite. For quasi-linear resistors, U' is

interpreted as the voltage current function, and the same proof shows

that a quasi-linear replacement arises.

It is not true that every symmetric semi-definite matrix is a re-

sistor matrix of some network. To state in algebraic terms the restric-

tions on R to be sure that such a matrix is actually a representation

of a network is a topological problem of graphs which has not been

solved. The matrix S relating to the voltage drops across the ca-

pacitors has exactly the same restrictions and properties as that of R.

It is to be noted that the assumption that one or more of the

matrices L, R, and 5 could be singular is an idealization. Thus all

actual conductors have a nonvanishing resistance, and if this were

assumed, it would immediately follow that the matrix R is non-

singular. It has been customary, however, and useful, to assume that

some circuits contain, for example, only resistance or only capaci-

tance, and so on. Where this idealization stops is partly a matter of

taste, but the weakest assumption which appears to be useful is that

the matrix L+R+S is nonsingular.

The nonlinear networks considered previously were assumed to

satisfy the equation

(6) Ly" + V(y') + Sy = e

where F(y') was taken as a quasi-linear replacement of Ry'. The net-

works to be discussed here are such that 5 = 0. In the linear case the

equation satisfied is

(7) Li' + Ri = e.

In the nonlinear case the equation satisfied is

(8) dV(i)/dt + Ri = e

where V{i) is a quasi-linear replacement of Li. In order to apply the

theory developed in I and III, it is necessary to reduce equation (8)

to that of the form of equation (6). Integrating equation (8) gives

(9) V(y') + Ry= p.

Here p=Jledt-\-h where h is some constant vector of integration.

Clearly, (9) is of the form (6) with L = 0 and S = R.
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Theorem 1. Let R be an arbitrary symmetric definite matrix. Let

e(t) be a finite integrable function for t^O. Then if ii and i2 are two con-

tinuous solutions of equation (8),

Proof. The hypotheses given are sufficient to insure that relation

(9) is valid. Moreover, it may be assumed that A =0, because since R

is nonsingular, there is a constant vector k such that Rk = h. Re-

placing y by y-\-k achieves this result without changing the value

of y'. Consider now the equation

In order to apply the main theorem of I, it is necessary to know that

all solutions of (10) are such that y'—>0 as t—><x>. To show this, note

that in a rotated coordinate system R is a diagonal matrix with

positive diagonal elements. Now by making a simple transformation

which merely shortens or lengthens the coordinate axes, R can be

made to be the identity matrix, E. Another rotation of axes converts

L to a diagonal matrix. Thus (10) breaks up into n equations of the

form hy{ +y* = 0, where Z* = 0. Clearly, then, y*'—K) as /—><». The

transformations made in going to this new coordinate system were all

nonsingular, so it follows that y£—»0 in the old coordinate system

also. Thus the theorem of I is now directly applicable and com-

pletes the proof.

Theorem 2. Let R be an arbitrary symmetric definite matrix. Let

e(t) be a continuous function of period 2ir. Then equation (8) has one

and only one solution for which i is a continuous periodic function.

Proof. It is possible to write e = e\-\-s where the integral of C\

over an interval of length 2w vanishes and where s is a constant

vector. Since R is nonsingular, there is a constant vector k such that

Rk=s. Let i = ii+k. Then equation (8) can be written as dVi(ii)/dt

-\-Rii = ei where Fi is the quasi-linear replacement as given by the

preceding lemma. Integrating this equation puts it in the form (9),

where p is a periodic function with a bounded first derivative.

Theorem 5 of III is now directly applicable, and it states that there

is a continuous periodic solution i\. Theorem 1, above, implies that

there is no other continuous solution of period 2ir or, for that matter,

of any other period. This completes the proof of Theorem 2.

(10) Ly' + Ry = 0.

4. Interlinked electric and magnetic networks. The roman num-
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eral III depicts a commonly used transformer core shape. Apparently

the analysis given in §1 is not applicable for such unsymmetrical

transformers. By making use of the familiar concept of a magnetic

network, the conclusions of §3 will now be shown to remain valid, at

the expense, however, of introducing an additional assumption.

A magnetic network is formally analogous to a direct current

electric network. First a maximal set of independent circuits is

selected in the transformer cores. Then any distribution of flux in the

cores can be expressed uniquely as a superposition of cyclic fluxes p

flowing in these circuits. This statement rests on the fact that

div B = 0. In the linear case the specific magnetic resistance is taken

to be In the nonlinear case the specific resistance function is the

inverse of the permeability function. The magnetic network equations

may then be written in analogy to the electric case. Expressed in

vectorial form, they are:

(11) m = M(f).

Here m may be called the magnetomotive force vector. By definition,

the component m' is the line integral of the tangential component of

the magnetic field around the jth circuit.

Suppose now that this magnetic network is topologically inter-

linked with an electric network. It is desired to relate the vectors m

and /of "magnetic space" with the vectors v and i of "electric space."

Introducing the linkage matrix, C, in exact analogy to the matrix C

in §1, the generalization of relation (1) is:

(12) v = Cf.

On the other hand, Ampere's line integral law demands that

(13) m = C*i.

Equations (11), (12), and (13) define an implicit relation between v

and i. By this method of analysis VerPlanck and Fishman [3] are

able to obtain explicit solutions of several magnetic amplifier net-

works in terms of the basic parameters.

If the magnetic network is constructed of ferromagnetic material,

the magnetic resistors may be termed quasi-linear resistors, because

the differential resistance will lie between positive limits. The con-

siderations given in §3 show that M is a quasi-linear replacement.

Since none of the branches have zero resistance, it follows that M

has an inverse, U. Thus

(14) v = CU(C*i).
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The differential transformation is dv = CU'C*di. But U is a quasi-

linear replacement, so it is easy to see that the matrix CU'C* satisfies

conditions (ii) and (iii). Thus (14) defines a quasi-linear replacement

in electric space. The theorems in §3 are now valid, so it may be said

that networks of unsymmetrical transformers and Ohmic resistors

are reliable.

The analysis in this section tacitly assumes that it is permissible to

treat distributed parameters as mean lumped parameters. A justifica-

tion of this assumption will be attempted in a later paper. This will

involve rather lengthy considerations, because the solution of a non-

linear Dirichlet problem is demanded.
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