
CLOSED INTEGRAL CURVES IN 3-SPACE AND ISOTOPIC
TWO-DIMENSIONAL DEFORMATIONS

HERBERT SEIFERT

If there is given an isotopic deformation of a two-dimensional

euclidean plane E onto itself, one can adjoin to every point P of E

a certain closed curve, the so-called "indicatrix" of P (§1). If the

indicatrix does not pass through P, we introduce the order of P rela-

tive to its indicatrix as the "rotation number" of the deformation at

P. A relation between the rotation numbers in different points of

E (§3) and a formula for the rotation number in the general case of a

"bounded deformation" (§4) is established. This formula admits an

application to the problem of closed integral curves of continuous

vector fields in the 3-dimensional sphere.

1. Indicatrix and rotation number. An isotopic deformation of the

plane £ is a set {^4\} (O^Xgl) of topological mappings of £ onto

itself such that Ao is the identical mapping and that A\(P) depends

continuously on X and P. The curve A\(P) (OjSX^l) is called the

trajectory of P. It is unessential that we confine X to the interval

O^X^l. Sometimes it will be advisable to take another closed

interval a^X^b.

Given the deformation {A\} we can adjoin to every point P of the

plane E an indicatrix, namely the curve

(1) AxAiAr\P) (0 g X i£ 1).

This curve is closed since (1) reduces to Ai(P) both for X = 0 andX = 1.

It may happen (for example, when the mappings A \ are commutative)

that the indicatrix consists only of the point -4i(P).

The point P lies on its indicatrix if and only if for a suitable X

AxAiArKP) = P

or

(2) AiAxKP) = Ar\P).

Putting

(3) ArKP) = 6.

we see from (2) that Q is a fixed point of Ai and from (3) that P lies

on the trajectory of Q. Thus the two statements "P lies on its indi-
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catrix" and "P lies on the trajectory of a fixed point of A" are

equivalent.

If P lies on its indicatrix, we call P an exceptional point. Let N be

the set of all exceptional points. N is empty if and only if A i is with-

out fixed points. N is closed. For if P is a point of E — N, P is not on

its indicatrix. Then the same is true for all points of a sufficiently

small neighborhood of P, as the indicatrix varies continuously with P.

Thus all points of a sufficiently small neighborhood of P belong to

E — N, that is N is closed.

Let P be not an exceptional point. Then P has a certain order rela-

tive to its indicatrix. The order of a point P relative to a closed curve

q which does not pass through P is defined to be 1/2tt times the total

change of the angle between the vector1 (PQ) and a fixed direction

when Q traverses the curve q. Of course the order depends on the

orientation of the plane. We always consider a triangle OAB posi-

tively oriented with 0 being the origin, A a point on the positive

x-axis, B a point on the positive y-axis. The order of P relative to its

indicatrix will be called the rotation number u(P) of the deformation

{^4\} at the point P. The plane E is decomposed by the set N of all

exceptional points into a number of regions (components of E — N).

If P is allowed to vary continuously in a component of E — N, then

the indicatrix of P changes continuously and never passes through

P. Hence the rotation number is constant on every component of

E — N. In the special case that N is the empty set or, which is the

same, the mapping Ai has no fixed points, the rotation number is

constant throughout the plane.

Examples :
I.

A\:   x' = x + X, y' = y.

Ai has no fixed points. The indicatrix of the point (x, y) shrinks to

the point (x+l, y). The rotation number is equal to zero everywhere.

II.

x' = x cos 2&irX — y sin 2kir\ + X,
(4)   A\: (k an integer),

y' = x sin 2kw\ -|- y cos 2kir\

A\ is the translation x' = x-\-\, y' = y. Therefore

ylx^i^r1:   x' = x cos 2kir\, y' = y -f sin 2kir\,

the transform of a translation A i by a rotation A \ being again a trans-

1 The vector from the initial point P to the end point Q will be designated by

{PQ), the usual notation, an arrow over the points PC being difficult to print.
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lation. Thus the indicatrix of a point P is the unit circle with center

P, k times traversed. The rotation number is equal to k throughout

the plane.
III.

x' = x cos 2kv\ — y sin 2kwK,
(5) A\\ (k not an integer).

y = x sin 2Iit\ + y cos 2kir\

A \ is the rotation around the origin through the angle 2kir. The origin

is the only exceptional point. In all points the rotation number is

defined and equal to zero because of the commutativity of the rota-

tions (5).

2. Three-dimensional interpretation of the rotation numbers. We

consider the plane E in which the deformation {^4x} is given as the

plane z = 0 of an orthogonal xyz-coordinate system. Let B\ be the

translation

(6) B\:   x' = x, y' = y, z' = z -f- X.

Then B\Ax maps the plane z = 0 onto the plane z=X. For every P£is

the points

(7) 7Mx(i>) = Ox (0 ^ X g 1)

form a curve which lies in the three-dimensional set Z

(8) £: 0 1, -•■<*■<*<+■*,—■*><?< + «

and whose parameter X coincides with the z-coordinate. The orthog-

onal projectkin of the curve (7) into the plane E is identical with the

trajectory of P. (7) will be called the streamline of the point P. As

the mapping B\A x of the plane z = 0 onto the plane z = X is one-to-one,

there is exactly one streamline through every point of Z.

If one identifies every two points (x, y, 0) and (x, y, 1), one can

continue on a streamline arbitrarily far: when one has arrived in a

point (x, y, 1), one continues on the streamline going out from

(x, y, 0). In particular one can start in an arbitrary point Q\ with

z-coordinate X and traverse the streamline until z has an increment

of Az=l. One arrives thus in a point Q\ in the plane z=X. The

mapping Q\-+Q\ of Z onto itself will be called the return mapping T

of the deformation {^4x}, the vector {Q\Q{ ) which is attached to the

point Q\ is termed the return vector of the point Q\. T is obviously

characterized by the following properties:

(a) T induces the mapping Ai in the plane z = 0.

(b) T carries streamlines into streamlines.

(c) T maps every plane z = X onto itself.
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In the plane z = X the mapping T induces the mapping A\AiA^1

provided that one pays attention to the transformation of the co-

ordinates x, y only. To prove this we introduce the points P and P' in

which the streamlines through Ox and Ox' intersect the plane z = 0.

From (7) we have

Ox = BiAx(P);      Ox = BMP')

and from property (a)

P' = A^P).

It follows that

(9) Ox = BiAiAar'BirKQJ,

which was to be proved.

In particular T induces in the plane z=l (as well as in the plane

z = 0) the mapping Ai. Because of the properties (b) and (c), a point Q

of Z remains fixed under the return mapping T if and only if all

points of the streamline through Q remain fixed. So the fixed points of

T are the points of the streamlines passing through the fixed points

of the mapping A i of the plane z = 0. These streamlines will be termed

the fixed lines of T. By orthogonal projection of the fixed lines onto

z = 0 one obtains exactly the set TV of exceptional points (§1). Now

we can give a 3-dimensional interpretation of the indicatrix and the

rotation number u(P) of a point P in the plane z =0. Let p be the seg-

ment O^z^l through P parallel to the z-axis, T(p) the image of p

under the return mapping T, then the orthogonal projection of T(p)

onto the plane z = 0 is the indicatrix of P.

This is an immediate consequence of the definition of the indicatrix

and of the fact that T induces the mapping A^AiA^1 in the plane

z=X. So the rotation number w(P) is up to the factor 2ir equal to the

total change of the return vector when its initial point traverses the seg-

ment p.

3. Relation between the rotation numbers in different points.

Henceforth we shall assume that the mapping Ai which is defined in

the plane z = 0 only has isolated fixed points F, (v= 1, 2, • • • ). Let

/, be the fixed line with the initial point F, oriented in the direction

of increasing values of z. The end point of /, is the point of the

plane z = 1 which has the same xy-coordinates as F,.

Every point P of the three-dimensional domain Z* = Z — Uf, is the

initial point of a return vector (PQ) which is different from zero.

When P traverses a singular 1-simplex sQZ* there is a certain total
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change of the angle between (PQ) and the positive x-axis. This

change, divided by 2ir, is called the rotation number ic(s) of the

1-simplex s. More generally we can adjoin to every 1-chain a = si

+ • ■ • -\-Sk(E.Z* a rotation number, namely w(cr) = co(si) + • • •

+ co(sfc). co(o-) is an integer if a is a cycle. As the return vector {PQ)

depends continuously on P, there is for every PQZ* a neighborhood

Up such that w(cr) =0 for every cycle in UP. It follows that the rota-

tion number is zero for every cycle in Z* which is homologous to zero

in Z*.
Let k, be a circle in the plane z = 0 with center F, such that F, is

the only fixed point of A i on the closed interior of k,. Choose the ori-

entation of k, so that the order of F, relative to k, is +1. As the return

vector in the plane z = 0 runs from P to Ai(P) we find that a)(k,) is

the fixed point index y, of F, under the mapping A \:

(10) u(k,) = y,.

The circles k, form a homology basis of dimension 1 of Z*. For Z*

is the topological product of E—UF, and the closed unit segment.

Thus for an arbitrary 1-cycle c(ZZ* there is a homology

(11) c~£x»*»   on Z*

where of course only a finite number of coefficients x» are not 0. x»

is obviously the intersection number of /, and a 2-chain &CZ with

boundary c:

(12) x, = S(J„ b),

(13) b = c.

The right side of (12) has a meaning provided that b intersects neither

the initial points nor the end points of the paths /„. This always can

be assumed. In formula (12) we make use of the orientation

(0, Oi, 02, 03) of Z where 0, Ox, 02, 03 are respectively the origin and

points on the positive x, y, z-axis. With this orientation the intersec-

tion number of the oriented z-axis and the oriented xy-plane is +1.

For the rotation number u(c) we have from (10) and (11)

(14) <o(c) = ^2

Let/, be the orthogonal projection of /, into the plane E (z = 0), and

U, V two points of E— U/„ whose rotation numbers we wish to

compare. If « and v are the unit segments through U and V parallel

to the z-axis, we have from the result of §2

(15) u(U) - «(«),      u(V) = «(»).
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We draw from U to V in the plane z = 0 a path q which avoids the

other fixed points. By the translation x' = x, y' = y, z' = z+l, q is

carried into the path Oi in the plane z= 1. Then

c = q -f- v — j i — «

is a 1-cycle in Z*. Hence

(16) co(c) = <o(i>) — co(m)

as the return vectors in corresponding points of q and gi are equal. Let

b be the 2-chain that is described by q under the translation into qi.

By the projection of Z onto E the intersection points of b and j, are

carried into the intersection points of q and /„. According to our

choice of the orientations of E and Z the indices of the intersection

points are not altered by the projection. So we have from (12)

(17) Xv = S(Jr, b) = S(f„ q).

From (14), (15), (16), (17) we deduce the following theorem.

Theorem 1. If U and V are not exceptional points relative to the

deformation {A\\ and if the fixed points F, of A\ have no limit point,

then the rotation numbers «(£/) and u(V) are connected by the relation

(18) «(7) - w(U) = Ü yj(f„ q),
i

in which y, is the fixed point index of F, under the mapping Ai, f, the

trajectory of F, under the deformation {A,} and S(f„ q) the intersection

number of f, and a curve q running from U to V.

In the formulation of the theorem the condition that q should avoid

the fixed points F, is obviously unnecessary.

4. Bounded deformations. An isotopic deformation {A\} of the

plane is called bounded if there is an e > 0 such that the diameter of

the trajectory of every point is less than e. More precisely {^4x} is

termed an t-deformation.

We shall generalize this concept in so far as we shall only assume

that the deformation {^x} (O^X^l)is defined in a certain domain

G of the plane E (not necessarily in the whole plane). In other words

we shall assume that (a) ^4x(0^X^l) is a topological mapping of G

into the plane E (not necessarily onto G)\ (b) .4.x depends continu-

ously on P and X; (c) A<> is the identity mapping; (d) for every point

P£G the diameter of the trajectory of P under the deformation is less

than €. Then {^4x} is called an isotopic e-deformation of G. If for
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some PEG the curve AxAiA^iP) (O^X^l) exists, it is called the

indicatrix of P. If P does not lie on its indicatrix, the order of P rel-

ative to its indicatrix is called the rotation number of the deforma-

tion at P. These definitions obviously agree with those of §1.

Let in particular G be the square

(19) I x - xo I < a, I y - y01 < a (a > 0)

and

e < a/2.

Then the squares

(20) I x — x01 < a — e,      \ y — yo \ < a — t,

(21) I x - xo I < a - 2e,       \ y - y0 \ < a - 2e

exist. A\ maps (19) onto a point set which contains (20). So Ax1 is

defined on (20). Similarly, AxAiA^1 is defined on (21). For A*1

maps (21) into (20); Ai maps (20) into (19), and A\ is defined every-

where on (19).

Lemma 1. If Mx}(0^Xgl) is an e-deformation of the square (19)

such that

(22) e < a/3,

and for every P of (19)

(23) *(P) < *L4i(P)),

x(P) being the abscissa of P, then in all points of the square (21) the

rotation number is defined and equal to zero.

Proof. We have shown that for every point P of (19) the indicatrix

A\AiA\V(P) is defined. It does not pass through P because other-

wise for a suitable X, Ai~1(P) would be a fixed point of Ai, contrary

to (23). Hence in all points of (21) the rotation number is defined and

consequently constant. So it will be sufficient to calculate it for a

single point, say for

Q = (*, - e, 0).

Let

§=(*„ +   0)   and  Q! = AM-

From (23) and the fact that Q and Q' have a distance less than e, it

follows that
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(24) *«?) < *(Q') < 0.

Let Rß be the point that divides the segment 0/(5 in the ratio

(1—p) (O^p^l). We consider the vector

(25)     v(\, m)

(Ax(Q)MR>)) iot 0 £ X £1, 0 £ ß £ 1,

(^x(1+M)(0^x^l^x-1^x(l+,)(O))

for 0 ^ X g 1, — 1 2= m = 0-

Fig. 1

The two definitions coincide for /i = 0 since R0 = Q' =Ai(Q) and

■4x(i+o) =^4\.   »(X, ju) vanishes nowhere in the rectangle

(26) 0 ^ X ̂  1, 1 ^ m = L

In fact, from (24) and

(27) *(0/) ^ *(*„),

it follows that Q and J?„ are different. So the same is true for A\(Q)

and ^IxCR,,), that is, i/(X, p)^0 for O^X^l, 0^/i^l. Similarly, for

— 1 ̂ ju^O the point S=A^Aw+^iQ) lies within the circle of Q with

radius 2e, A^1 and ^4xa+M) being e-mappings. From (22) and (23) we

deduce that Ax(S) is contained in (19) and

S 5* AxiS).

It follows by multiplication with ^4x

Ax(S) * AxAx(S),

that is, v(\, h)t*0 for O^X^l; — 1 ̂ p^O. Next one can verify that

on the edges X = 0, X = l,/t=lof the rectangle (26) the end point of

the vector o(X, p) always has greater abscissa than the initial point.

Indeed we have for X = 0
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v{l, m) = {J

j)(0, a) = <
\(QQ') (-1 ^ (• s O)

and

< *«?') ^

from (24) and (27). Similarly for x=l

[{Q'A.iR,)) (0 ^ n ^ 1),

and

x(ff) < *(*„) < xiAM),

*OW0) < xiAUt+M)

from (27) and (23). Finally for ju= 1

v(\, 1) = (Ax(Q)Ai<®)

and

x'Ax(Q)) < 0,      x(Ax(Q)) > 0

since a;(Q) =Xo — e, *(ß) = *o4-« and A* is an e-mapping.

Now we consider v (x, ju) for ^1= —1. We have

kx, - 1) = (QAxAxArKQ)).

This is the vector that leads from Q to the point (x) on the indicatrix

of Q. So the rotation number (o(Q) is given (up to a factor 2ir) by

the total change of the angle between the positive x-axis and the

vector v(x, — 1) when x goes from 0 to 1. Since »(x, /j) does not vanish

in the rectangle (26) we come to the same result when we continue

v(K, n) along the three other edges of the rectangle, but here the end

point of v(K, n) has always greater abscissa than the initial point.

Therefore

u(Q) = 0, q.e.d.

Theorem 2. Let {A\} (0 ^x^ 1) be a bounded isotopic deformation

of the plane E, such that A1 has at most isolated fixed points F\, F2, • • •.

If f, is the trajectory of F„ then for a point V which is on none of the

f, the rotation number u(V) is given by

(28) = £ yA,
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where d, is the order of V relative to f, and y, is the fixed point index of

F, at the mapping Ai.

An immediate consequence of Theorem 2 is the following:

Theorem 3. If {A*} (O^Xgl) is a bounded isotopic deformation

of the plane and A\is without fixed points, then the rotation number of

the deformation is zero in every point of the plane.

Proof of theorem 2. Because of the boundedness of the deforma-

tion there is a 5 > 0 so that for every point the diameter of the trajec-

tory is less than 5. We choose the coordinate system so that V gets

the coordinates x= — 45, y = 0.

X=2

Fig. 2

We extend the deformation {^4\} (O^X^l) to a deformation whose

parameter X runs from 0 to 3 by the following definition: For 1 ̂ X ^2

let {i4x^4i-1} be the 5-deformation

x' = X, y> = y (* g 0),

(29) cd - X«, y' = y (0 ^ x ^ S),

x' = x -f- (X - 1)5,       y' = y (x ^ 8)

whose streamlines are shown by Fig. 2.

For 2^X^3 let {.dx^-1} be an isotopic 17-deformation (r/<5) and

As a (necessarily topological) simplicial mapping of the plane with

only isolated fixed points.2 In the following we shall restrict rj by

some further conditions.

The deformation {A\} (0^X^3) is denoted by .4(0,3) and the

meaning of A(o,d and Aw is similar. -4(o,i), A(o,2), -4(0,3) is respec-

tively a 5-, 25-, 35-deformation. All quantities (fixpoints, rotation

numbers, trajectories) concerning .4(o,2)(.<4(o,3)) will be distin-

guished from the corresponding quantities of -4(o,i) by a prime (two

2 Every typological mapping Ai of the plane onto itself can be carried into a

simplicial mapping by an isotopic ij-deformation (ij arbitrarily small). (See Graeub,

Semilineare Abbildungen, to appear in Sitzungsberichte der Heidelberger Akademie

der Wissenschaften. This deformation may be omitted if A a has only isolated fixed

points.
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primes). For example, the fixed points of A% will be designated by

Fl', and/," is the trajectory of Fl' under A^.s).

We consider these deformations

(a) in the left half-plane L: x<0,

(b) in the right half-plane R: x>28,

(c) in the middle area M: 0^x^25.

The fixed points F, of A\ are denoted by Fir, FT„ or Fm„ according

as they belong to L, R, or M. The fixed points Fl of At and Fi* of

A3 will be classified and denoted in a similar way.

If P is a point of R, we have x(P) — x(Ai(P)) <5 since A^.d is a

5-deformation; moreover x(An(P)) — x(Ai(P)) = 8 because of (29),

therefore

(30) x(P) < x(A2(P)).

It follows that for all points P of a bounded closed subset of R and

for sufficiently small n the inequality

(31) x(P) < x(A3(P))

holds, for example for the points of the square

(32) I x - 1351 g 105;       | y \ ^ 105.

Since .4(0,3) is a 35-deformation, we have for the rotation number

co"(t/) at the center <7=(135, 0) of the square (32) because of

Lemma 1

(33) w"(<7) = 0.

At the point V=( — 45, 0) the rotation number <o(F) relative to the

deformation A(0.i) is defined by hypothesis, that is, the indicatrix

AxAiA^tV) (O^X^l) does not pass through V. So the same is

true for the indicatrix A\AzA^{V) (0gX^3) relative to the de-

formation .4(0,3), provided that v is sufficiently small. For under this

condition the two indicatrices will differ arbitrarily little. So «"(V) is

defined and equal to <a(V):

(34) co"(F) = w(F).

Now we can apply Theorem 1 on the deformation .4(0.3) and the

points U, V:

(35) w(V) = »"(10 = «"(0 -f E yl'S(fl', q).

q may be chosen to be the straight segment UV. (33) and (35) imply

(36)   a{V) = £ y'/ßij'tl, q) + £ yXßifZ «) + E ?)•
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Since A(o,s) is a 36-deformation and there are no fixed points of A3

in the square (32) because of (31), we have S(f", q)=0 so that the

third term in (36) vanishes. But also the second term on the right side

of (36) is zero. For /„„, being a trajectory of a point of M, lies in the

strip — 3d<x<58 and consequently has with q the intersection

number 0. Since the trajectory/// is in the half-plane x< 3d, the inter-

section number 5(//,', g) is not altered when we replace q by the ray

drawn from V in the direction of the positive x-axis. In other words,

S(Jl', q) is equal to the order 0(" of V relative to /,'„'. So (36) implies

closed circular disk with center V whose radius p is chosen so that

35<p<45 and that no fixed point of At is on the boundary of K.

If Fv is a fixed point of Ai which does not lie on K, the trajectory

/, of Fr cannot encircle V, since the diameter of /, is less than 5. So in

(28) we have only to consider the fixed points on K. Let these be

Fi, F2, • • • , Fp. We choose ß>0 so small that the open /3-neighbor-

hoods Uß(F,) for v = 1, 2, • • • , p belong to K and do not intersect

one another. Since A i has no fixed point on the closed set

there is an a>0 such that for every PfE-ff the distance of P and

Ai(P) is not less than a. If we choose v<a, then also A3 has no

fixed points on H and we have

if F"u F"#, • • • , F'/j,, are the fixed points of A% on Up(Fr) and

Y"i, 7^2. • • • i yl'j,, are their indices. Moreover, the trajectory of

F'y't under the deformation A^,3) differs arbitrarily little from the

path of Fi under A^.d (provided that rj is sufficiently small). There-

fore we may assume that the orders 0"t and 8, of V relative to these

trajectories are equal:

V

K- l) Uß{F,) = H,

(38)

(39)

So we obtain

(40) T,yA=i, yA =tl y'M.
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The right sides of (37) and (40) differ only by terms y"ß", that cor-

respond to fixed points F," not on K. But these have a distance

>p>35 from V, such that the corresponding trajectories//,', being

less than 35 in diameter, cannot encircle V. So we have 0j',' = O for

these F//. It follows that the right sides of (37) and (40) are equal,

hence

»(Y) = E yJB„
,=0

q.e.d.
Theorems 1 and 2 admit generalizations for the case where the de-

formations {A\\ (O^X^l) are only defined in a certain open region

G, not necessarily in the whole plane.

Theorem 1'. Let U and V be two points of a plane open region G.

Then there exists an «>0 with the following property: Formula (18)

holds for every isotopic e-deformation {A*} (O^X^l) of G for which

A\ has at most isolated fixed points {provided that the rotation numbers

o)(U) and u(V) are defined). qQG is a path leading from U to V.

Theorem 2'. Let V be a point of a plane open region G. Then there is

an e>0 with the following property: Formula (28) holds for every

isotopic ^-deformation \A\\ (0 iS X ̂  1) 0/ Gfor which A1 has at most iso-

lated fixed points (provided that the rotation number tu(V) is defined).

Theorem 3'. Let V be a point of a plane open region G. Then there

is ane>0, such that c»(V) =0 for every isotopic e-deformation of G for

which Ai is without fixed points.

Theorem 3' is contained in Theorem 2'. The proofs of Theorems V

and 2' differ only unessentially from those of Theorems 1 and 2. One

only has to choose e so small that V respectively U and V are suffi-

ciently far from the boundary of G (compared with «) in order that

the constructions made in the proofs of Theorems 1 and 2 become

possible. In the proof of Theorem 2' use has to be made of the fact

that every homeomorphic mapping of G into the plane can be de-

formed by an isotopic ^-deformation (77 arbitrarily small) into a

simplicial mapping with only isolated fixed points.

5. Closed integral curves of vector fields in the three-dimensional

sphere. If at every point of a differentiable re-dimensional manifold

there is given a nonvanishing tangent vector which varies continu-

ously with that point we speak of a continuous vector field. The

necessary and sufficient condition for the existence of a continuous
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vector field in a closed manifold is the vanishing of the Euler char-

acteristic. A differentiable curve which at each of its points is tangent

to the field vector at that point is called an integral curve of the field.

It is unknown if every continuous vector field of the three-dimensional

sphere S3 contains a closed integral curve. In the following we con-

sider on S3 a special class of vector fields for which the existence of a

closed integral curve is a consequence of Theorem 3'.

Let S3 be the three-dimensional unit-sphere of the four-dimensional

euclidean space

2 2 2 2
(41) as, 4- x2 + Xi 4- Xi = 1.

We consider on S3 the field C of the "Clifford-parallel" vectors

(42) dxi = — Xi,   dx2 = Xi,   dx% = — xif   dx\ = X3,

whose integral curves are great circles. They will be called the Clif-

ford-circles of S3. We choose the orientation of S3 so that two different

Clifford-circles (each of which has a definite orientation by (42)) have

the looping coefficient -f-1.

Let C be a continuous vector field on S3 which differs sufficiently

little from C, that is, the angle between the vector of C and that of C

is at every point of S3 smaller than a (a sufficiently small). Moreover,

we suppose that through every point of S3 there passes exactly one

integral curve. We shall prove that for sufficiently small a there exists

at least one closed integral curve in C-

The integral curves of C will be called the streamlines of S3. Let

ß be a fixed number between 0 and 7r/2, P a point on S3, c the Clif-

ford circle through P, Uß(c) the (open) ß-neighborhood of c. We in-

troduce in Uß(c) coordinates x,y,z: P is the origin of the coordinate

system, x = const., y = const, are the Clifford-circles in Uß (c), z = const,

are the two-dimensional great spheres orthogonal to c; x and y are

Riemann normal coordinates on 2 = 0 and z is the arclength on c,

divided by 27r. There is a one-to-one correspondence between the

points of Uß(c) and the points of the set

x2 + y2 < j32, 0 & z < 1,

of euclidean xyz-space. The streamline which passes through P ad-

mits the representation

x = <b(z),      y = yf/(z).

<p(z), \p(z) are continuous functions of z and defined for Ogz^l if a

was chosen sufficiently small. Let D(P) be the point x = <j>(\),

y=^(l), z=l of S1. Since P was an arbitrary point the representation
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P—>D(P) is defined everywhere on S3. It can be considered as the

final result of an isotopic deformation along the streamlines and

therefore is a homeomorphic mapping with degree +1. We have to

prove that D has fixed points.

For this purpose we choose once for all a Clifford-circle c* and

consider besides D a mapping T which is defined only in the /3/2-neigh-

borhood Ußn(c*) of c*. As previously the points of Uß(c*) are re-

ferred to coordinates x, y, z. Let Q(xo, yo, z0) be a point of t/ß/2(c*) and

(43) x = f(x0, y0, z0, X), y = g(x0, y0, z0, X), z = z0 -f X

(0 ^ X g 1, x2 4- y2 < 02)

the streamline passing through Q(xo, y0, z0). For the existence of the

representation (43) we must again suppose a to be small enough.

Let T(Q) be the point

x = f(xo, y0, z0, 1), y = g(x0, y0, z0, 1), z = z0 4- 1.

In general the mappings Q—>T(Q) and Q—*D(Q) do not coincide on

Uß/i(c*), for -D(0J is on the great sphere which passes through Q and

which is orthogonal to the Clifford-circle through Q, while T(Q) is on

the great sphere which passes through Q and which is orthogonal to

the Clifford-circle c*. However, if Q is on c*, we have D(Q) = T(Q)

and consequently

(44) T(c*) = D{c*).

(43) defines for zo = 0 an isotopic deformation

(45) x = f(x0, yo, 0, X),      y = g(x0, yo, 0, X) (0 ^ X ̂  1)

of the two-dimensional region x\-\-y\ <^/4.

In order to prove our theorem indirectly we shall suppose that

there is no closed streamline. Then the final mapping (X = l) of (45)

is without fixed points so that for sufficiently small a we may apply

Theorem 3'. This means that the point (xo = 0, yo = 0) has the order 0

relative to its indicatrix. Now, the indicatrix is the projection of

T(c*) along the Clifford-circles, and since every two Clifford-circles

have the looping coefficients +1, it follows that c* and T(c*) have the

looping coefficient 4-1. Therefore by (44)

(46) looping coefficient (c*, D(c*)) = 4-1.

Every two Clifford-circles have a definite spherical distance. If the

distance is 7r/2 the Clifford-circles are called conjugate. In 4-dimen-

sional Xi, • • • , x4-space the planes of conjugate Clifford-circles are

orthogonal. We deform the mapping D of S3 into a mapping Di which
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maps every Clifford-circle into its conjugate. We only have to move

D(P) on the arc PD(P) into the point DX(P) whose distance from P

is 7r/2. Therefore we have from (46)

(47) looping coefficient (c*, Di(c*)) = -+- 1.

This means that D\ maps every Clifford-circle with degree 4-1 onto

its conjugate. On the other hand one can consider the set of the

Clifford-circles as a fibre bundle whose base space is a two-sphere

S2. Di induces in S2 a one-to-one mapping without fixed points which

consequently has the degree — 1. This together with the fact that the

fibres are mapped with degree +1 implies that D\ and D have de-

gree — 1 in contradiction to our previous statement that the degree

of D is        This proves the following theorem:

Theorem 4. A continuous vector field on the 3-sphere which differs

sufficiently little from a field of Clifford-parallels and which sends
through every point exactly one integral curve has at least one closed

integral-curve.

This result can be generalized. If in our previous notation P = D(P),

we say that the streamline through P closes after one circulation. Let

c* be the Clifford-circle through P and T the above-mentioned map-

ping of the ß/2 neighborhood of c*. Then T induces in the surface

2 = const, that contains P a mapping with the fixed point P. If P is

an isolated fixed point we may assign its index to the closed stream-

line through P. Suppose that there is only a finite number of stream-

lines which close after one circulation. Then one can prove by means

of Theorem 2' that the sum of the indices of these streamlines is

always equal to 2. More generally, if S3 is replaced by an arbitrary

three-dimensional fibre-bundle, this sum is equal to the Euler char-

acteristic of the two-dimensional base space.
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