ON MATRICES WHOSE CHARACTERISTIC EQUATIONS ARE IDENTICAL

W. V. PARKER

In a previous paper [1] ${ }^{1}$ it was shown that if A and C are matrices such that $A C A=0$ and B is an arbitrary matrix, then $A B$ and $A(B+C)$ have the same characteristic equation. It is the purpose of this note to prove two theorems, each of which gives the above result as a special case.

Theorem 1. Let A be an $n \times m$ matrix of rank $r<n$ and let C be an $m \times n$ matrix such that $A C A=k A$ (k a scalar). If B is an $m \times n$ matrix, the characteristic equation of $A B$ is $x^{n-r} \phi(x)=0$ and the characteristic equation of $A(B+C)$ is $x^{n-r} \phi(x-k)=0$.

Let P and Q be nonsingular matrices such that

$$
P A Q=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right), Q^{-1} B P^{-1}=\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right), \text { and } Q^{-1} C P^{-1}=\left(\begin{array}{ll}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right)
$$

where B_{1} and C_{1} are square matrices of order r. Then since $A C A=k A$,

$$
P A C A Q=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right)\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
C_{1} & 0 \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
k I_{r} & 0 \\
0 & 0
\end{array}\right)
$$

and hence $C_{1}=k I_{r}$.
Also

$$
P A C P^{-1}=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
C_{1} & C_{2} \\
C_{3} & C_{4}
\end{array}\right)=\left(\begin{array}{cc}
k I_{r} & C_{2} \\
0 & 0
\end{array}\right)
$$

and

$$
P A B P^{-1}=\left(\begin{array}{ll}
I_{r} & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
B_{1} & B_{2} \\
B_{3} & B_{4}
\end{array}\right)=\left(\begin{array}{cc}
B_{1} & B_{2} \\
0 & 0
\end{array}\right)
$$

and hence

$$
P(A B+A C) P^{-1}=\left(\begin{array}{cc}
B_{1}+k I_{r} & B_{2}+C_{2} \\
0 & 0
\end{array}\right)
$$

Presented to the Society, September 2, 1949; received by the editors February 16, 1949 and, in revised form, May 19, 1949.
${ }^{1}$ Numbers in brackets refer to the references cited at the end of the paper.

It follows that the characteristic equation of $A B$ is $x^{n-r} \phi(x)=0$ and the characteristic equation of $A(B+C)$ is $x^{n-r} \phi(x-k)=0$ where $\phi(x)=0$ is the characteristic equation of B_{1}. The result of the previous paper follows if $k=0$.

In case $k \neq 0$ it may as well be assumed that $k=1$ so that $A C A=A$ Set $U=A B, E=A C$ and $V=U+E$. Then $E^{2}=E, E U=U$, and $E V$ $=V$. Hence $V^{\cdot} U=(U+1)^{\bullet} U$ and $U^{*} V=(V-1)^{d} V$ so that $f(V) U$ $=f(U+1) U$ and $f(U) V=f(V-1) V$ for all polynomials $f(x)$. Let $g(x)$ be the minimum function of U and $h(x)$ the minimum function of V. Then $g(V-1) V=g(U) V=0$ and $h(U+1) U=h(V) U=0$ so that $h(x) \mid x g(x-1)$ and $g(x) \mid x h(x+1)$. Hence the minimum functions of U and V satisfy one of the four relations:
(1) $h(x)=g(x-1)$;
(2) $(x-1) h(x)=x g(x-1)$;
(3) $(x-1) h(x)=g(x-1)$;
(4) $h(x)=x g(x-1)$.

That all four relations are actually possible may be shown by examples.

Theorem 2. If M and N are square matrices such that $N M$ (or $M N)=N^{2}=0$, then M and $M+N$ have the same characteristic equation.

Since $N^{2}=0, N$ is similar to

$$
\left(\begin{array}{lll}
0_{r} & I_{r} & 0 \\
0_{r} & 0_{r} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

where r is the rank of N. There is no loss of generality in assuming that N is in this form. Then since $N M=0$

$$
M=\left(\begin{array}{lll}
M_{1} & M_{2} & M_{3} \\
0_{r} & 0_{r} & 0 \\
M_{4} & M_{5} & M_{6}
\end{array}\right)
$$

where M_{1} and M_{2} are square matrices of order r. Any principal minor of M which contains elements of M_{2} also contains a row of zeros from rows $r+1$ to $2 r$. Hence the characteristic equation of M is independent of the elements of M_{2}. But M and $M+N$ differ only in the elements of M_{2} and therefore their characteristic equations are identical. If $M N=N^{2}=0$, then $N^{\prime} M^{\prime}=N^{\prime 2}=0$, so that M^{\prime} and $M^{\prime}+N^{\prime}$ have the same characteristic equation. But the characteristic equation of any matrix is the same as that of its transposed matrix and the proof of the theorem is complete.

If $A C A=0$ then $(A C)(A B)=(A C)^{2}=0$ and hence $A B$ and $A(B+C)$ have the same characteristic equation.

It is well known that if A and B are square matrices, $A B$ and $B A$ have the same characteristic equation and if either A or B is nonsingular, the two products are similar. Roth [2] has pointed out that if both A and B are singular, the products may be similar or not.

With P and Q as defined in Theorem 1

$$
P A B P^{-1}=\left(\begin{array}{ll}
B_{1} & B_{2} \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
B_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & B_{2} \\
0 & 0
\end{array}\right)=M+N_{1}
$$

where $N_{1} M=N_{1}^{2}=0$ and

$$
Q^{-1} B A Q=\left(\begin{array}{ll}
B_{1} & 0 \\
B_{3} & 0
\end{array}\right)=\left(\begin{array}{ll}
B_{1} & 0 \\
0 & 0
\end{array}\right)+\left(\begin{array}{ll}
0 & 0 \\
B_{3} & 0
\end{array}\right)=M+N_{2}
$$

where $M N_{2}=N_{2}^{2}=0$.
Hence

$$
A B=P^{-1} M P+P^{-1} N_{1} P=K+S
$$

where $S A=S^{2}=0$ and

$$
B A=Q M Q^{-1}+Q N_{2} Q^{-1}=L+T
$$

where $A T=T^{2}=0$. Since $K=P^{-1} M P=A B-S$ and $L=Q M Q^{-1}$ $=B A-T$ the following theorem is established.

Theorem 3. If A and B are square matrices, there exist matrices S and T such that $S A=S^{2}=A T=T^{2}=0$ and such that $A B-S$ is similar to $B A-T$.

Bibliography

1. W. V. Parker, On the characteristic equations of certain matrices, Bull. Amer. Math. Soc. vol. 55 (1949) pp. 115-116.
2. W. E. Roth, A theorem on matrices, Amer. Math. Monthly vol. 44 (1937) p. 95.

The University of Georgia

