
ON MATRICES WHOSE CHARACTERISTIC EQUATIONS
ARE IDENTICAL

w. v. parker

In a previous paper [l]1 it was shown that if A and C are matrices

such that ACA=0 and B is an arbitrary matrix, then AB and

A(B + C) have the same characteristic equation. It is the purpose of

this note to prove two theorems, each of which gives the above re-

sult as a special case.

Theorem 1. Let A be an nXm matrix of rank r<n and let C be

an mXn matrix such that ACA=kA (k a scalar). If B is an mXn

matrix, the characteristic equation of AB is xn~rq>(x) = 0 and the char-

acteristic equation of A(B + C) is x^tyfa — k) =0.

Let P and Q be nonsingular matrices such that

(It 0\ /B^  BA /Ci CA

where Bi and C\ are square matrices of order r. Then since A CA = kA t

PACAQ - ('■ °VC'  C')('' °) . (C>  ") - ("'' °]
\o o/Vc, cJ\o o/   \o   o/   V o 0/

and hence C\ = klr.

Also

and

PACP-i

PA BP-1

/Ir 0\ /Ci ca _ /klr ca

" \o o/\c8 cj ~ V 0 0 /

/Ir 0\/b! ba _ /b1 ba

~ \0 0/\5S bJ~\o 0/

and hence

<7i! + klr   Bt + CAP(AB + AC)P~l _ /Bx + klr   Bt + ca

V   o        o /
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It follows that the characteristic equation of AB is xn~r<p(x) = 0 and

the characteristic equation of A(B + C) is xn~rcp(x — k) = 0 where

<t>(x) = 0 is the characteristic equation of B\. The result of the previous

paper follows if k = 0.

In case k 0 it may as well be assumed that k = 1 so that A CA — A

Set U=AB, E=AC and V= U+E. Then E2 = £, £t/ = U, and £F
= F. Hence VU= (U+1)'U and /7«F=(F-1)«F so that /(F)77
=/(f/+l)c7and/(C/)F=/(F-l)Ffor all polynomials/(x). Let g(x)

be the minimum function of U and &(x) the minimum function of V.

Then g(V-1) F = g(£7) 7 = 0 and A(£/+l) U = h(V) U = 0 so that
Ä(x)|xg(x — 1) and g(x)|xh(x+l). Hence the minimum functions of

U and V satisfy one of the four relations:

(1)   h{x) = g(x - 1); (2)   (x - l)h(x) = xg(x - 1);

(3)   (x - l)Ä(x) = g(x - 1); (4)   h(x) = xg(x - 1).

That all four relations are actually possible may be shown by ex-

Theorem 2. If M and N are square matrices such that NM (or

MN) = 7Y2 = 0, then M and M+N have the same characteristic equation.

Since 7V2 = 0, N is similar to

where r is the rank of N. There is no loss of generality in assuming

that N is in this form. Then since NM = 0

where M\ and M2 are square matrices of order r. Any principal minor

of M which contains elements of M2 also contains a row of zeros from

rows r+1 to 2r. Hence the characteristic equation of M is independent

of the elements of M2. But M and M-\-N differ only in the elements of

M2 and therefore their characteristic equations are identical. If

MN = N2 = 0, then N'M' = A'2 = 0, so that M' and M' + N' have the

same characteristic equation. But the characteristic equation of any

matrix is the same as that of its transposed matrix and the proof of

the theorem is complete.

amples.

M =

Mi   M2 Mz

Or      Or 0

Mi  Mi Mf,
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If A CA = 0 then (A C) {AB) = {AC)2 = Q and hence AB and A (B + C)
have the same characteristic equation.

It is well known that if A and B are square matrices, AB and BA

have the same characteristic equation and if either A or B is non-

singular, the two products are similar. Roth [2 ] has pointed out that

if both A and B are singular, the products may be similar or not.

With P and Q as defined in Theorem 1

(Bx  B2\     AB,   0\     /0 BA
PABP-i = ( ) = ( )+( ) = M + N1

\0    0 /    \0    0/    \0   0 /

where 7YiM = 7Y2 = 0 and

/B1  0\     /Bx  0\     /0 0\
Or^Q = (         ) = (         )+( ) = ^ + /V2

\B3  0/    \0    0/    Vj53 0/

where M/y2 = Al = 0.
Hence

^15 = P-lMP + P-rNiP = K + S

where 5^4 = S2 = 0 and

BA = QAfQ-1 + QNzQ-1 = L + T

where ^T=r2 = 0. Since X = P~1MP = AB -S and i = QMQr1
= BA — T the following theorem is established.

Theorem 3. If A and B are square matrices, there exist matrices S

and T such that SA =S2=AT=T2 = 0 and such that AB—Sis similar

to BA - T.
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