
SUMMABILITY AND ANALYTIC CONTINUATION

V. F. COWLING1

1. Introduction. In this paper we describe a new family of Toeplitz

summability methods, and we study the regions in which these

methods sum a Taylor series to the analytic continuation of the

function which it represents.

Let A = (anm) and x= {sm} (n, m = 0, 1, • ■ • ) be a matrix and a

sequence of complex numbers, respectively. We write formally

CO

(1) $n = An(x) —  y ] QnmSmi

and say that the sequence x (and the corresponding series

zZm-o (sm — Sm-i), with s_i = 0) is summable A to the sum / if each of

the series in (1) converges and lim tn exists and equals t. We say that

the method A is regular provided it sums every convergent sequence

to its limit. The method A is regular if and only if

oo

(2) z2\«™\^K (n = 0, 1, •••),

(3) lim anm = 0 (m » 0f $» • • • ),
n—*«

CO

(4) lim zZ ««m = ii

where K is a constant independent of n (cf. Toeplitz2 [2]).

2. The methods F*. For each constant r (r^l) the element of the

matrix A=FT shall be defined by the equations

^ «»m(r) =0 (m < n),

Onm(r) = (1 - r)"+1Cm,„rm-» (w ^»).

We note first that, for n = 0, 1, • • • and |r| <1,

E a„m(r) = (1 - r)-+» Z Cm,nr™-" = 1
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and

1 - r

If on the other hand |r|^l (r^l), then zZm-o \anm(r)\ = <»

(n = 0, 1, • • ■ ). Therefore the method Fr is regular if and only if r

is real and satisfies the condition 0^r<l.

Theorem3 2.1. If AB denotes the matrix product of A and B,

pnp-2 = pnpn = jj* where r = riJrr2 — TlTi

Let F^ = {anm), F'*=(bnm), F"F'*=(cnm) and Fr2Frl = (ynm). Then

cnm = 0 when n>m. When n^m,

=  (1 — ri)"+Vl rlr2   (! ~~ r2) +Ck,mCn,k
k=n

= (1 — n)      fi f2 I -        I (1 — r2)     Cm,„ ^^"»-n.*! -
\ r2/ k-o \ r2

= (1 — r,)"+1(l — r2)n+1Cm,n(r1 + r2 — r1r2)"> *

= [l - (fi + r2 — fifg)]   C»,.,,(ri + r2 — ri^)™ ".

Since the last expression is symmetric in ri and 7*2» *Ynm — Cnmj the

proof is complete. We note the corollary that, for r^l, the matrix

Fr has the inverse F", where p = — r/(l — r).

Theorem 2.2. If ri and r2 are real constants (0=?jri<r2<l), every

bounded sequence summed by F*1 is summed by Fri, and to the same

sum.

Let r— (r2 — ri)/(l — ri); then the method Fr is regular, and Fr'

= FrFn, by Theorem 2.1. The present theorem now follows from a

remark by Agnew [l] (cf. p. 328).

3. Summability of Taylor series. Henceforth, {um\ and \sm)

shall denote sequences of complex numbers related by the equations

sm = u0 + Mi + • • • + um       (m = 0, 1, • • • ).

Lemma. //

3 The author is indebted to A. Wilansky for helpful discussion regarding this

result.
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(i) the series 22u<* z"1 has a positive radius of convergence R;

(ii) \r\<R;
(iii) /„=(l-r)«£:.nCm,BL7mr"-» (« = 0, 1, • • • );

(iv) Tn = t0+h+ ■ ■ ■ +tn (» = 0, 1, • • • );

then

00

(6) r„ = (1 - r)»+'EC»,.W"-"     (n = 0, 1, • • • ).
m= n

Equation (6) asserts that a certain sum of n Taylor series is equal

to another Taylor series. All the series in question converge because,

for any fixed positive integer n, the respective radii of convergence of

the four series

CO 0O 00 00

^    UmZmf ^ ' SmZmt } , CmtnUmZm, ^ \ CminSm,Zm

m~0 m=0 m=0 m=0

are equal. The validity of the equation will now be established by

induction.

For w = 0, the equation (6) reduces to the identity

00 00

(1 - r) 22 Smrm = 22 u™rm-
m=0 m=0

But if the equation holds for n = k, that is, if

(1 - r)w ^

r*

then

Tk+i = Tk + tk+i

(1   _ r\ k+l   /    » oo 1

-)     \ 22 Cm,ksmrm+1 + 22 Cm,k+i(sm - sm-i)rm>
r     /          \ m-k                              m—k+1 )

(1   -    r\ k+1   I co

-)     \   22  [Cm,kr + Cm,k+i — Cm+i,k+ir]smrm
r     / \ m=k+l

+ [Ck,k — Ck+1,k+1]skrk+^

/\ _ r\k+l oo

-   (-)     z2 {Cm,k+1 — [Cm+i,it+l - Cm,k]r\smrm
\     r     / m-fc+l

(l - ry+* «
/ .   L>m,k+lSmr .

rk+l
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In other words, equation (6) also holds for « — £ + 1. This proves the

lemma. From the lemma it follows that if 0 < | r\ <R, where R is the

radius of convergence of the series 2Lu">zm> the relation

«/l-r\"" (l-r)»+i»
2^ I-)   2^ Cm,numrm = hm-C„
n=0 \     f     /    m=n n—»w T m=n

holds in the sense that the existence of either member implies the

existence, with the same value, of the other member. The following

result is now immediate:

Theorem 3.1. // the series zZm-o umzm has a positive radius of con-

vergence R, the series £wm is summable Fr to the sum L for any constant

r (0 < I r I <R) for which the series

m=0 \     '      / m=n

Cmi7lumr

converges to L.

4. Analytic continuation by means of the methods Fr. Let D be a

simply connected region in the complex plane, C a simple closed

Jordan curve lying in D and bounding the finite region D'. Corre-

sponding to each complex number r (rj^\) we define an open set

R(r, C) as follows: R(r, C) is the set of all points in D' for which

I z — rz\ < 11 — rz\ whenever t lies on C. A set B shall be said to be of

type R*(r, D) if B is closed and if C can be chosen in such a way

that B is a subset of R(r, C). In the following theorem, fM(rz) de-

notes the reth derivative with respect to w of f(w) at the point w=-rz.

Theorem 4.1. If fiz) is uniform and regular in the region D, r is a

complex constant (r^ 1), and B is a set of type R*(r, D), then the series

CO

(7) 2/W(ra)(l-r)v/»!
n-0

converges to f(z) uniformly in B.

If z lies in B,

1   r f(t)dt      1   r   fit) 1
/(z) = 7^ -= -\—'<-~-" dt

im J c t — z     Zivi J c I — rz 1 — (z — rzz)/(t - rz)

2iri J c t — rz n,=,o\t — rz /

where C is a curve in D such that B is a subset of R(r, C). The series
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in the last integrand converges uniformly with respect to t on C and

z in B, because, for such values of / and z,

I (z - rz)/(t - rz)I < K < 1,

where the constant K depends only on B and C. Therefore

f(z) = Z (z - rz)»- I -
to 2wiJc (t - rz)-+»

But the point rz is inside of the curve C; for otherwise the line seg-

ment joining the points z and rz would meet the curve C at some

point the inequality | (z—rz)/(t' — rz) | <1 would not be satisfied,

and the point z would not lie in B. Therefore the last integral has the

value 2irif-n)(rz) /n', and the theorem is proved.

The hypothesis that the region D is simply connected will now be

removed. Let D be a connected open set, E its boundary, and r a

complex constant (rj^l). By Q(r, D) we shall denote the set of all

points in D for which the inequality |z — rz| <|/ —rz[ is satisfied

whenever t lies in E.

Theorem 4.2. Let the function /(z) be regular and uniform in the

bounded region D, and let r be a complex constant (r 5^ 1). Then the series

(7) converges to /(z) absolutely in Q(r, D), and the absolute convergence

is uniform in every closed subset of Q(r, D).

Let B be a closed subset of Q(r, D), and z0 a point in B. It is to be

shown that the series

(8) Z/n)(«o)(l -r)\1/n\

converges to/(zo), and that the absolute convergence of the series (9)

is uniform with respect to Zo in B.

We observe that (8) is the Taylor series of /(z0) about the point

z = rZo.4 Since B is a closed subset of Q(r, D), there exists a positive

number e such that | (z0 — rz0)/(t — rza) \ <l—2e when z0 is in B and

t is on E. The Cauchy estimate for the coefficients of our Taylor

series gives the result

|/<">(rz0)/«!| < M(rz0)/[(1 - t)80}n,

where 50 is the distance from rz0 to the set E and M(rz0) denotes the

maximum modulus of/(z) on the circle |z —rz0| =(1—e)50. As the

4 The author is indebted to A. M. Gleason who pointed out this fact in an oral

communication.
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point z0 ranges over the set B, the points

z = rz0 + e*(l - e)50 (0 g K 2x)

range over a subset of D which is bounded away from the set E,

and therefore the quantities M(rzo) have a common finite upper

bound M. It follows that

/<->(r*o)(l - r)"-
n\

and the theorem is proved.

Theorem 4.3. Let D be a connected open set containing the origin,

/(z) a uniform function regular in D; let the series zZam %m converge to

fiz) in a circle of radius p\ and let r be a complex constant (r^ 1). Then,

in every closed set which is contained in the intersection of the set Q(r, D)

and the circle Jz| <p/|r|, the series zZa™zm *s uniformly absolutely

summable Fr to f(z).

If r = 0, the set Q(r, D) is contained in the circle |z| <p, and the

result is trivial. To prove the theorem for rj^O, we observe first that

the series

CO

zZ amm(m — 1) •••(« — » + l)(rz)m_n
m=>n

converges to/(n)(rz) in the region | z\ <p/\r\. It follows that the series

(7) can be written in the form

CO       CO °°     / 1 _ f\ ** °°

zZ IZ ömCm,„(l - r)nzmrm'n = zZ[-)  2Z Cm,nrmamzm,

and upon application of Theorem 3.1 (with um = amzm) the present

theorem becomes a corollary of Theorem 4.2. We note that we have

established analytic continuation of the function represented by the

series £a»>zm DY means of summability methods which need not

even be regular.

5. Summability of a special series. We now subject the methods

F* to the customary test of applying them to the series zZz"- Here, the

sole singularity of the function /(z) is the point z= 1, and the bound-

ary of the region D can therefore be taken to consist of the point

z=l together with the circle |z[ =K, where K is arbitrarily large.

We shall restrict our considerations to the case where Fr is regular,

that is, where r is real and 0 = r<l. If z is any point in the plane, the

1(1 - 26)50J"M

[(1 - e)5ol"
e)nM,
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inequality \z — rz\ <\t — rz\ is certainly satisfied if t is sufficiently

large. It remains to examine the inequality for the case where t=l.

Here we have, with z = x+iy,

(x2 + y2)(l - r)2 < (1 - rx)2 4- r2y2,

(1 - 2r)(x2 + y2) < 1 - 2rx.

Theorem 4.3 now gives the following result: If 0 <r < 1/2, Fr sums the

series Z3"1 to the function 1/(1—z) in the intersection of the region

|z| <l/r with the interior of the circle having its center at z

= — r/(l — 2r) and passing through the point z= 1. If l/2<r<l, F*

sums the series in the intersection of the region |z| <l/r with the

exterior of the circle having its center at z = r/(2r —1) and passing

through the point z— 1. The method F1/2 sums the series in the inter-

section of the region |z| <2 with the half-plane x<l.

Finally, we recall that in §2 the relation FrOFri (0^ri<r2<l)

was shown to hold in the space of bounded sequences. The relation

does not hold in the space of all sequences. For we have now estab-

lished that the series zZ(~V3)n is summable F1/2; on the other

hand, the transform of this series by Fr does not even exist when

r^3/5.
Added in proof: After the present paper had been accepted for pub-

lication, an interesting paper by P. Vermes [Amer. J. Math. vol. 71

(1949) pp. 541-562] appeared which overlaps the results of the

present paper. In addition R. P. Agnew [Math. Rev. vol. 11, p. 242]

in a review of a paper on these methods by W. König-Meyer [Math.

Zeit. vol. 52 (1949) pp. 257-304] points out that the first systematic

study of these methods is in the thesis of R. Wais [Das Taylorsche

Summierungsverfahren, Tubingen, 1935].
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