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Introduction. In his recent papers entitled Faithful representations

of Lie groups, I and II,1 the author has called a locally compact con-

nected group L faithfully representable (J.r.) if L admits a faithful

representation,2 and has determined the characteristic properties of

f.r. groups. It is to be pointed out that although an f.r. group is a

Lie group, a connected Lie group is not always f.r.3 Furthermore, he

introduced there a notion of (7)-groups, and proved that a Lie group

is f.r. if it is an (l)-group* where the definition of (l)-groups runs as

follows:

Definition 1. Let G be a locally compact connected group. Then G

is called an (I)-group if for every element g of G distinct from the identity

there exists a representation of G under which g does not go over into the

unit matrix.

The above definition is obviously equivalent to the one of imposing

on G the condition that G can be approximated by f.r. groups, namely

that there exists a system {Na} of closed invariant subgroups of G

so that every factor group G/Na is f.r. and the intersection of all

AVs coincides with the identity group {e}, which is composed of the

identity e only.

In the present paper we shall study the structure of (Z)-groups as

a sequel of [M.G.]. Now K. Iwasawa called a locally compact

group G an [L)-group if G can be approximated by Lie groups; he

studied the structure of (L)-groups, and in particular solved the so-

called fifth problem of Hilbert for such groups.6 Our (Z)-group is of

course a connected (L)-group and our study is based naturally on the

theory of (Z-)-groups also.

Next we shall state the outline of the present paper. In §1 we study

semi-simple (L)-groups, where the semi-simpleness of an (L)-group is

defined in an analogous way as in the theory of Lie groups. §2 is

Received by the editors May 3, 1949.
1 Mathematica Japonicae vol. 1 (1949), and Nagoya Mathematical Journal vol. 1

(1950). Referred to as [M.G.], or explicitly [M.G.I.] or [M.G.II.].
* By a representation we mean a continuous linear representation. An f.r. group

can also be defined as a topological group topologically isomorphic with a closed

connected subgroup of the general linear group. [M.G.II, Theorem 9].

* See, for example [M.G.].

* See [M.G.II, Theorem 8].

5 K. Iwasawa, On some types of topological groups, Ann. of Math. vol. 50 (1949).

We shall refer to this paper as [K.I.].
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devoted to the proof of Theorem 2, which has an essential bearing on

the latter part of this paper. Now in §3 we deal with the class of

completely reducible (l)-groups, which contains both compact con-

nected groups and semi-simple (Z)-groups. After such preparations

we shall investigate in §4 the structure of general (/)-groups. Theorem

5, as well as Theorem 6, is our fundamental result, affording a char-

acterization of (7)-groups. Lastly in §5 some supplementary facts

about solvable (/)-groups are stated.

In closing the introduction, the author wishes to express his sincere

gratitude to Mr. Y. Matsushima for his valuable suggestions and co-

operation.

1. Semi-simple (Z)-groups. Let G be a locally compact group. G

contains then the radical, that is, the uniquely determined maximal

connected solvable invariant subgroup, which is closed in G in virtue

of [K.I.]. Now we shall extend the notion of semi-simpleness of Lie

groups to (X)-groups, as follows:

Definition 2. An (L)-group is called semi-simple if its radical coin-

cides with the identity group.

Since the radical is characteristic, any closed invariant subgroup of

a semi-simple (i)-group is also semi-simple.

Now in order to study the structure of semi-simple (X)-groups we

first give the following two lemmas.

Lemma 1. Let G be a locally compact connected group, and let C and N

be closed invariant subgroups of G such that G = CN. Denote by C° and

N° the connected components of C and N containing the identity respec-

tively. Suppose C, or C°, be compact, then we have G = C°N°.

Proof. As C° is compact, C°N is a closed invariant subgroup. Since

the intersection of CN and C contains C, the isomorphism6 G/CN

^C/C°NnC implies that G/C°N is O-dimensional. On the other

hand, G/C°N must be connected because of the connectedness of G.

Hence we get G = CN. Now a similar argument as above would estab-

lish the lemma. q.E.D.

Lemma 2. Let G be a connected semi-simple (L)-group, and K a

compact O-dimensional invariant subgroup of G. Suppose that the factor

group G/K is a Lie group. Then G itself is a Lie group.

Proof. It is clearly sufficient to prove that K cannot be infinite

and separable. Suppose that K be an infinite separable group. Then

• By an isomorphism (or a homomorphism) we mean a continuous open isomorphism

(or homomorphism).
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there exists a sequence {Kn}:

K = K\ 2) K2 D K3 Z) • • • , Kn Kn+i,

of open subgroups of K such that f\Kn = {e\. Since K is a central

invariant subgroup and any open subgroup of a topological group

is closed, Kn's are all closed invariant subgroups.

We denote by G the universal covering group of G/K. Then we

can readily select a sequence \Zn\ of central invariant subgroups of

G:

^iDZzDZjD • • ■ 1 Zn ^ Zn+i,

such that G/Zn^G/Kn, w = l, 2, • • • . Denote by Z the intersection

of all Zn. Then it is easy to construct an algebraic isomorphism be-

tween G/Z and G. Since K is central, K is a countable group. On the

other hand, it is easy to prove that a countable compact group is

discrete. Hence K must be finite, contrary to the hypothesis. This

completes our proof.

Now let G be a connected semi-simple (L)-group and let C* be

the (uniquely determined) maximal compact invariant subgroup7

of G. Then by a theorem of Iwasawa in [K.I.], G contains a closed

invariant subgroup L* of G such that G=C*L* and [C*, L*]= {e},

where we denote by [C*, L*] the subgroup generated by the elements

of the form c~H~^ci withe EC* and/E-k*. Let C and L be the connected

components of C* and L* respectively containing the identity. Then,

using Lemma 1, we obtain that G = CL.

Let now K be the maximal compact invariant subgroup of L, and

K° the connected component of K containing e. C being the maximal

connected compact invariant subgroup, K° must be contained in

the intersection of C and L. Hence K° is central. This shows that K~°

coincides with the identity group, whence K is O-dimensional. There-

fore, using Lemma 2, we get the fact that L is a Lie group. Now de-

note by D the intersection of C and L. Since D is compact and is con-

tained in the center of L, D must be a finite group.

Next let {C\} be a sequence of compact connected simply con-

nected semi-simple simple Lie groups, and C the direct product of all

CVs: C=JJ[Cx. C is also a compact group with respect to the so-called

weak topology. Now let D be a closed O-dimensional invariant sub-

group of C. Then the factor group C/D is obviously semi-simple, and

conversely any connected compact semi-simple group is readily

7 The existence, as well as the uniqueness, of such a subgroup for any connected

(L)-group has been assured in [K.I.].
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proved to be obtained in such a way.8

In a similar way, we can establish a method of constructing all con-

nected semi-simple (-L)-groups: Let {S\\ be a sequence of connected

simply connected semi-simple simple Lie groups such that almost

all of S\'s are compact, and let S be the direct product of all S\'s:

S= HoY Then 3 is clearly a connected semi-simple (L)-group with

respect to the weak topology. Now let D be a closed O-dimensional

invariant subgroup of S. SfD is clearly semi-simple, and any con-

nected semi-simple (L)-group is isomorphic with some JJ_S>,/D for

suitable {§\} and D.

Now a factor group of the above JJS\ is clearly semi-simple.

Hence any factor group of a connected semi-simple (L)-group is also

semi-simple. Thus we get the following theorem.

Theorem 1. (1) Let G be a connected semi-simple (L) -group, and C

the maximal compact connected invariant subgroup of G. Then there

exists a closed connected invariant Lie subgroup9 L of G so that G = CL,

and [C, L]= {e}, and that the intersection of C and L is a finite group.

(2) Any factor group of G is semi-simple.

Using the latter part of Theorem 1, we can easily prove the follow-

ing corollary:

Corollary 1. Let G be a connected (L) -group and R the radical of

G. If N is a closed invariant subgroup of G such that RN is closed, then

RN/N is the radical of G/N.

Corollary 2. Let G be a connected group and S a closed connected

invariant subgroup. We denote by 5X the centralizer10 of S. If S is a

semi-simple (L)-group, tfien we have G = SSX.

Proof. Corollary 2 has been proved in [K.I.] for any compact

invariant subgroup 5. It is also clear for a connected semi-simple

Lie group 5. Now it is not hard to establish the corollary from these

special cases. Q.E.D.

2. Proof of Theorem 2. In this section we shall give a proof of the

following theorem.

Theorem 2. Let G be an (l)-group and K a compact invariant sub-

group. Then the factor group G/K is also an [l)-group.

8 Cf. H. Freudenthal, Topologische Gruppen mit genügend vielen fastperiodischen

Funktionen, Ann. of Math. vol. 37 (1936).

9 By a (closed) Lie subgroup we mean a subgroup which is a Lie group.

10 Namely, the (invariant) subgroup composed of all elements which commute

with every element of 5.
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In order to prove Theorem 2, we first recollect and modify some

results stated in [M.G. ].

Let G be an f.r. group, and N a maximal closed simply connected

solvable invariant subgroup of G. Then there exists a closed subgroup

T, whose radical is compact, such that

G= TN,      THN = {«}.

Conversely a connected Lie group is f.r. if it admits such a decomposi-

tion.11

Now the radical of an f.r. group is compact if and only if it is com-

pletely reducible,12 where the complete reducibility of an (/)-

group is defined as follows:

Definition 3. An (I)-group G is called completely reducible if every

representation of G is completely reducible.

Let T be a completely reducible f.r. group and A the radical of T.

Then A is compact and there exists in T a closed connected semi-

simple subgroup S such that T = SA. It is clear that [S, A] = {e\

and the intersection of 5 and A is a finite group. Now any factor

group of a semi-simple f.r. group is also f.r.,1* and a connected Lie

group is f.r. if its radical and a maximal semi-simple subgroup14 are

f.r.16 These obviously imply that a factor group of a completely re-

ducible f.r. group is also a completely reducible f.r. group.

Next, it is to be remarked that a simply connected solvable Lie

group is homeomorphic with the Euclidean space, and that a locally

compact connected solvable group is a simply connected Lie group if

and only if it contains no compact subgroup other than the identity

group.16

Now the following lemma is a special case of Theorem 2.

Lemma 3. Let G be an f.r. group and K a compact invariant subgroup.

Then the factor group G/Kis also f.r.

Proof. Let G = TN be a decomposition as above, and let If be a

maximal compact subgroup17 of T. Since N is homeomorphic with

11 [M.G.II, Corollary 2 to Theorem 7].
a [M.G.II, Lemma 14].

" [M.G.II, Lemma 9].
" By a maximal semi-simple subgroup of a Lie group we mean a connected group

generated by a closed maximal semi-simple local subgroup.

15 [M.G.II, Theorem 7]. A. Malcev, On linear Lie groups, CR. (Doklady) Acad.

Sei. URSS. (1943).
16 See [K.I.].

" See [KJ.j.
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the Euclidean space, M is maximal compact also in G. Hence K is

contained in M, and thus we have KCZ.T. Now since T is completely-

reducible, the factor group T/K is a completely reducible f.r. group.

It is now clear that G/K is f.r., because

G/K = T/K-(NK)/K

is also a decomposition as above. Q.E.D.

Proof of Theorem 2. Let g be an element of G which is not con-

tained in K. For any element x of K we can readily select a representa-

tion fx of G and a neighborhood Ux of x such that fx( Uxg) does not

contain the unit matrix. Now there exists a finite system {xi, • • • ,xn}

of elements of K such that the system { Uxv ■ • • , l7Xn} of neighbor-

hoods covers K: [}UX~)K.

Now let / be the so-called sum representation of /*„ • • • , fXn, and

let A7!, 7Y2, • • • , Nn, N be the kernel of /,,, fx„ • • • , fXn, f. From the

relations UXigf~^Ni = 0 (* = 1, 2, • • • , «), and flA^A7', we have

UXigC\N = 0, where 0 denotes the empty set. Accordingly we obtain

Kgr\N = 0, whence

Kg n KN = 0.

Now since G/N is f.r. and KN/N is a compact invariant subgroup

of G/A7, G/KN is also f.r. by Lemma 3. Now the relation Kgf~\KN = 0

implies that Kg/K is not contained in the kernel of the homo-

morphism G/K~G/KN:G/K/KN/K^G/KN, and this completes

our proof.

Corollary. Let G be an (I)-group, and U a neighborhood of the

identity in G. Then there exists a compact invariant subgroup K, which

is contained in U, such that the factor group G/K is f.r.

Proof. Since G is a connected (Z,)-group, there exists a compact

invariant subgroup K such that G/K is a Lie group and K(ZU, in

virtue of [K.I.]. Thus the corollary is an immediate consequence of

Theorem 2. Q.E.D.

3. Completely reducible (7)-groups. In [M.G. II]18 we have de-

termined the class of all semi-simple f.r. groups. Here we consider

semi-simple (7)-groups.

Theorem 3. (1) Let G be a semi-simple (L)-group, and let

G = CL

Lemma 9, Theorem 3, and Theorem 4.
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be the decomposition of G as in Theorem 1. Then G is an (I)-group if and

only if L is f.r.
(2) The center of a semi-simple (l)-group is compact.

(3) Any factor group of a semi-simple (l)-group is also an (I)-group.

Proof. Assume that L be f.r. Then the direct product CXL is

clearly an (/)-group. Now we can readily find a finite central invari-

ant subgroup D of CXL such that CXL/D^G. Hence G is an (/)-

group by Theorem 2. The converse is trivial.

Next, we know that the center of a semi-simple f.r. group is finite.1'

From this the second assertion follows immediately.

Further, let G be a semi-simple (/)-group and N a closed invariant

subgroup of G. We denote by N° the connected component of N

containing the identity. N" is clearly a semi-simple (/)-group. Let C°

be the maximal connected compact invariant subgroup of A0 and let

A70 = C°Z°

be the decomposition of N° as in Theorem 1. C is obviously an in-

variant subgroup of G, and the compactness of C° implies that G/C°

is an (Tj-group by Theorem 2. Let now G/C = C*L* be the decomposi-

tion of G/C° as in Theorem 1. Then the invariant subgroup N°/C°

is clearly contained in L*. The fact that a factor group of a semi-

simple f.r. group is f.r. readily implies that G/N° is also an (Z)-group.

Hence the center of G/N" is compact by our above assertion. This

shows the compactness of N/N°, and we obtain the last assertion,

using Theorem 2 again. Q.E.D.

It is well known that a semi-simple f.r. group is completely re-

ducible, and so is a semi-simple (7)-group. Now, we study general

completely reducible (/)-groups. A criterion for the complete re-

ducibility is furnished by the following lemma.

Lemma 4. An (I)-group is completely reducible if and only if its

radical is compact.

Proof. Let G be a completely reducible (/)-group. According to

the corollary of Theorem 2, there exists a compact invariant sub-

group K such that G/K is f.r. Denote by R the radical of G. Then

RK/K is the radical of G/K, in virtue of Corollary 1 to Theorem 1.

Now since G/K is obviously completely reducible, its radical RK/K

is compact. Hence R must be compact.

Conversely, let G be an (/)-group with the compact radical R, and

let N be an arbitrary closed invariant subgroup of G such that the

" [M.G.i, Lemma 5].
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factor group G/N is f.r. It is sufficient to show that G/N is com-

pletely reducible, or what is the same, that the radical of G/N is

compact. Now the compactness of R implies that RN/N is the com-

pact radical, and this completes our proof.

Let G be a topological group. We denote by d(G) the commutator

group of G, that is, [G, G], and by D(G) the closure of d(G). Following

Iwasawa we call D(G) the topological commutator group of G. The

topological commutator group of a connected group is obviously

connected.

Next, let G be a completely reducible (/)-group and R the radical

of G. Since R is compact, D(G)R/D(G) is the radical of the commuta-

tive G/D(G), Hence D(G)R coincides with G: G = D(G)R. Now let K

be a compact invariant subgroup of G. Since it is clear that d(G)K

= D(G)K, we have

D(G)K/K = D(G/K).

Let Z be the intersection of D(G) and R. In any representation of G

with a compact kernel, Z goes over into the intersection of the com-

mutator group and the radical, which is obviously a finite group.

Hence Z must be O-dimensional. That D(G) is semi-simple follows

immediately.

Now it is easy to prove the following theorem.

Theorem 4. (1) Let G be a completely reducible (l)-group, and C the

maximal connected compact invariant subgroup. G contains a closed

connected semi-simple f.r. invariant subgroup L such that G = CL,

[C, L]= {e}, and the intersection of C and L is a finite group. And

conversely a topological group which admits such a decomposition is a

completely reducible (I)-group.

(2) Any solvable invariant subgroup of a completely reducible (l)-

group is contained in the center, which is compact.

(3) Any factor group of a completely reducible (I)-group is also a

completely reducible (I)-group.

Remark. It is well known that a locally compact connected group

is maximally almost periodic if and only if it is decomposable into a

direct product of a compact group and a vector group.20 On the other

hand, it is clear that a vector group is not completely reducible.

Hence, or from Theorem 4, we get the following proposition, by

which the position of compact groups in the theory of topological

groups is clarified:

H. Freuden thai, loc. cit.
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A locally compact connected group is a completely reducible, maxi-

mally almost periodic group if and only if it is compact.

4. Fundamental theorems.

Theorem 5. Let G be a locally compact connected group. If G is an

(l)-group, then there exists a closed completely reducible (l)-group T in

G and a closed simply connected solvable Lie invariant subgroup N such

that

G = TN,      THN = {e},

and conversely.

Proof. Let G be an (I)-group. In virtue of the corollary to Theorem

2, we can select a sequence {Ka} of compact invariant subgroups of

G such that Ga = G/Ka is f.r. and the intersection of all Ka's coincides

with the identity group. Now, because of the compactness of Ka,

there corresponds D(Ga) to D(G) in the homomorphism G~Ga.

We denote by M the radical of D(G). Since Ka is compact, MKa/Ktt

is the radical of D(Ga). On the other hand we know that the radical

of the commutator group of an f.r. group is simply connected.21

Hence M cannot contain a compact subgroup other than the identity

group. Therefore M is a simply connected Lie group.

Now, since D(G) is an (/)-group by itself, D(G) contains a compact

invariant subgroup K such that the factor group D{G)* = D(G)/K is

f.r. Now since MC\K= {e\, and MK is closed, M* = MK/K, which

is isomorphic with M, is the radical of D{G)*. Let S* be a maximal

semi-simple subgroup of D(G)*. The center of S* is finite and 5* is

closed. Hence the intersection of S* and M* is the identity group.

Thus we obtain the decomposition

D(G)* = S*M*,      S*r\M* = {e*},

where e* denotes the identity of D(G)*.

Now let 5 be the complete inverse image of S* in the homo-

morphism Z>(G)~Z)(C7)*. Then 5 is obviously semi-simple and we

get

D(G) = SM.

Since any solvable invariant subgroup of 5 is easily seen to be com-

pact, we have

5H M = {«}.

21 See [M.G.i, Lemma 7].
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Next, since G/D(G) is connected and commutative, using the

structure theorem of Pontrjagin, we can assure the existence of a

closed invariant subgroup H containing D(G) such that G/H is

compact and H/D(G) is a vector group.

We denote by N the radical of H. Now we select a compact in-

variant subgroup K~i of H so that H/K\ is f.r. K\ is obviously con-

tained in D(G). Hence we can consider Ki as K mentioned above

and retain the above notations. Let N* be the image of N in the

homomorphism H^H* =H/K. N* is clearly the radical of H*. The

fact that H*/D(G)* is commutative immediately implies that any

maximal semi-simple subgroup of H* is contained in D(G)*. Hence

S*, as a maximal semi-simple subgroup of D(G)*, is also a maximal

semi-simple subgroup in H*. Thus we have H* = S*N*. Hence we get

that

H = SN.

Now M* is obviously locally coincident with T>{G)*C\N*. On the

other hand from the relation

H*/D(G)* gg N*/D(G)* r\ N*,

N*/D(G)*f~\N is a vector group. This is impossible unless D(G)*f~\N*

is connected. Hence we have D(G)*f~\N* = M*. Thus the simple

connectedness of M* and that of N*/M* imply that of N*.

Next we shall prove that A7 is a simply connected Lie group iso-

morphic with N*. First, since the center of 5 is compact, Sf^N must

be a compact O-dimensional group. Hence KC\N is also compact

O-dimensional. Now suppose that KC\N^{e). Then there exists a

proper open (closed) subgroup Q of K(~\N. Then by the relation

N/KC\N~N*, N/Q is a proper covering group of N*. This is clearly

impossible, because N* is simply connected. Hence Kf~}N= {e\.

Thus our assertion holds immediately, and moreover we get

Sr>N = {e\.

Next we put G/N = G', H/N = H'. Then G' is an (Z,)-group, and

H' is a closed connected semi-simple invariant subgroup of G' be-

cause H'^S. Hence by Corollary 2 to Theorem 1 there exists a closed

invariant subgroup A{ of G' so that G'=H'Al and [H', A{ ]

= {e'\, where e' is the identity of G'. The center of H' coincides with

HT\A(, and is compact because H' is a semi-simple (Z)-group. On

the other hand, the relation G/H=G'/H'=Ai /H'(~\Al implies

that A[ IH'C\A{ is compact. Hence A[ is a compact group. Let now

A' be the connected component of A{ containing e'. Then Lemma 1
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implies that G' = H'A'.

Next we denote by R the complete inverse image of A' in the

homomorphism G~G'. R is clearly the radical of G, and we get

G = HR = SR.

Let now G~(G) be a homomorphism of G onto an f.r. group (G) such

that the kernel is compact, and let (R), (N) be the image of R, N

respectively in the homomorphism. It is clear that (R) is the radical

of (G) and (A7) a simply connected Lie group such that (R)/(A7) is

compact. Hence (A) is a maximal closed simply connected solvable

invariant subgroup of (G). Now since (G) is f.r., (G) contains a

closed completely reducible f.r. group (T) such that

(G) = (T)(A),      (T) r\ (N) = {(e)\.

Let 7" be the complete inverse image of (Tj in G. The fact that N

contains no compact subgroup other than [e] readily implies the

following relations

G = TN,      TC\ N = {e}.

Thus we obtain in particular the connectedness of T. Now it is easy

to prove that the radical of T is compact. Hence T is completely

reducible by Lemma 4. Thus our first assertion is proved.

Conversely, let G be a locally compact connected group which

admits a decomposition G=TN, TC\N= [e\, as above. Then, since

G/A=r and T is an (Z)-group, there exists a system {Na} of closed

invariant subgroups containing N such that f\Na = N and G/Na's

are f.r.

Now let us denote by Ti the set of all elements of T which are com-

mutative with every element of N. Then Ti is clearly a closed in-

variant subgroup of G such that T/ Ti is f.r. Now in virtue of Theorem

4, T/Ti is completely reducible. Hence the relations

G/Ti = T/TvNTi/Tu      T/T1C\NT1/Tl = T1/T1,

NT1/T1 SS N,

imply that G/T\ is f.r. Thus because of the relation ftNa(~\Ti = {e} we

get the result. Q.E.D.

Corollary. Let G be an (I)-group and K a maximal compact sub-

group of G. Then there exists a closed connected simply connected solvable

Lie subgroup H of G such that

G = HK = KH,      KC\H = {e}.
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Proof. In virtue of Theorem 5, it is clearly sufficient to consider the

case when G is completely reducible. On the other hand, the corollary

holds for f.r. groups by [M.G.II].22 Thus by Theorem 4 we can

readily complete our proof. Q.E.D.

Theorem 6. Let G be a locally compact connected group and R the

radical of G. If R is an (I)-group and G contains a closed semi-simple

(I)-group S such that

G = SR,

then G is an (l)-group, and conversely.

Proof. In the first place we suppose that R is an (Z)-group and S

is a closed semi-simple (/)-group in G such that G = SR. We can

prove that G is an (L) -group because G/R is obviously an (L)-group.28

Let K be a. compact invariant subgroup of G such that G/K is a Lie

group. Then SK/K is clearly a maximal semi-simple subgroup, and

RK/K the radical, of G/K. Since they are f.r. by Theorem 2, G/K

itself is also f.r. in virtue of [M.G.II]. This means that G is an

(/)-group.

Conversely, let G be an (Z)-group and G = TN a decomposition as

in Theorem 5. Let D(T) be the topological commutator group of T,

and A the radical of T. Then D(T) is semi-simple and we get T

= D(T)A by Theorem 4. Now it is clear that AN coincides with the

radical R. Hence we have G = D(T)R, and this completes our proof.

5. Solvable (I) -groups. Let G be a locally compact connected solv-

able group. Then G is an (L)-group in virtue of [K.I.]. Hence there

exists a compact invariant subgroup K such that G* = G/K is a Lie

group. Let now D(G) be the topological commutator group of G.

Then because of the compactness of K we have

D(G*) = D(G)*(= D(G)K/K).

Now it is well known that D(G)* is nilpotent. On the other hand K

is a central invariant subgroup by [K.I.]. Hence D(G)K is nilpotent,

and so is D(G). Thus the topological commutator group of a locally com-

pact connected solvable group is nilpotent.24

a [M.G.II, Corollary 1 to Theorem 7].

a* Let G be a locally compact connected group, and N a closed connected invari-

ant subgroup of G. Suppose N and G/N are both (L)-groups. Then G is an (L)-group

by itself. See [K.I.].

24 We can prove moreover the following theorem: The radical of the topological

commutator group of a connected (L)-group is nilpotent. This is an extension of a theorem

of E. Cartan. Cf. E. Cartan, These, Paris, 1894.
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Now we shall prove the following lemma.

Lemma 5. Let G be a connected group and N a closed connected in-

variant subgroup. Let K be a compact subgroup of N. If N is locally

compact and nilpotent, then K is central in G.

Proof. Let K~i be the maximal compact invariant subgroup of N.

Then Ki is commutative and N/K\ is a Lie group. On the other hand,

we know that any compact subgroup of a connected nilpotent Lie

group is a central invariant subgroup.25 Hence we can easily prove

that K is contained in K\.

Now it is clear that Kx is an invariant subgroup of G. Then because

of the connectedness of G, Kx must be central.26 Hence K~i is a central

invariant subgroup of G. Q.E.D.

It is now easy to establish the following theorem.

Theorem 7. Let Gbea locally compact connected solvable group and A

a maximal compact subgroup of G. The following conditions are all

necessary and sufficient for G to be an (l)-group. (1) G = AN, A(~\N

= {e}, where N is a closed simply connected Lie invariant subgroup.

(2) D(G) is a simply connected Lie group. (3) The center of D(G) is a

connected simply connected Lie group. (4) AC\D(G) = {e}.

From Lemma 5 and Theorem 7 we have in particular the following

corollary.

Corollary. A locally compact connected nilpotent group is an (/•)-

group if and only if it is a direct product of a compact group and a

connected simply connected Lie group.

Nagoya University

26 [m.g.ii, Lemma 13].

26 See [K.i.].


