PROOF OF A THEOREM OF JACOBI
N. J. FINE
Jacobi! proved the following theorem:
If G(3) is defined in [—1, 1), then
I, = f G(cos x) cos nxdx
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His first proof, for the case in which G(g) may be expanded in a power
series, depends on the formula

f G™(cos x) sin?" xdx.
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cos?— " x sin?® xdx,

which is itself a special case of (1). His second proof, which assumes
nothing about the derivatives of G(z) of order exceeding %, depends
on the lemma
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where z=cos x. He points out that (3) may also be deduced from (1).

We offer here a short proof by induction which does not involve
previous knowledge of (2) or (3). For »=1 the theorem is seen to be
true by an integration by parts. Now

L 3 k3
Iy = f G(cos x) cos x cos nxdx — f G(cos x) sin x sin nxdx
0 []

= f G(cos x) cos x cos nxdx — nf Gi(cos ) cos nxdx
0 0

by integration by parts, where Gi1(z) is an integral of G(2). Applying
the induction hypothesis to F(z)=2G(2) —nGi(z) and observing that
F™(3) =2G™(2), we get
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I = f F(cos x) cos nxdx
0

1
T 1.35---(2n—1)
Another integration by parts yields
1 L4
Iy = f G+ (cos x) sin?"*? xdx,
135 @+ J, {cos #)

and the theorem is proved.
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L 4
f G™(cos %) sin?" x cos xdx.
0
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