
ON THE MINIMUM OF A CERTAIN INTEGRAL

A. SPITZBART

In this paper the following result will be proved.

Let f(w) be an analytic function of w for \w\ <1, continuous for

\w\ = 1, and let the value f (a) = 1 be prescribed at a point w = a within

the unit circle. Among functions of this type, the minimum value of the

integral fc\f(w)\ p\dw\, where p^l and C is the unit circle \w\ =1,

is given by

<t>i(\a\,p)  if 1 á p â 1 + | a\,        <t>2(\a\,p)  if p ^ 1 + | a \,

where

4>i(\«\,p) = 2»(1 -\a\2y+i[2(l + \a\2)]*->>

■[(p- l)\a\ + (\a\2-p2+2Pyi2]p-2

■[p + \a\2-\a\ (\ a\2 - p2 + 2py2],

<p2( | a |, p) = 2t(1 - | a \2)»"(P - !)»-*[(* - I)2 + | « I2]1"".

These minima are attained.

As would be expected the two forms coincide if £ = l + |a|.

If p = 1 the first form always applies and the minimum is0i(|a|, 1).

For f(w) as in the statement of the theorem we have

r .        ..      . ,    ,
I   I f(w) I I dw | è <£i( | « |, 1)

J o

= 2x(l - | a \2)2[ | a \2 + (1 + | a |2)1/2]-\

a result which has been proved by Macintyre and Rogosinski.1

If p^2 the second form applies and, in particular, for p = 2 the

inequality becomes

f | f(w) \2\dw\ è 4>Á I ce |, 2) = 2x(l - | a |2)3(1 + | a \2)~\
J c

If a = 0 the second form applies so that with/'(0) = 1 we have

f(w)\p\ dw\ ^ 2ir.
/.' c

We proceed to the proof. By a particularization of a result of
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Kakeya,2 of the functions F(z) which are analytic for \z\ <1, con-

tinuous for \z\ al, and with the values F(0) =A, P(0) =D assigned,

the one which minimizes the integral fc \F(z)\p\dz\, with p^l,

C: \z\ =1, is given by

(1) Foiz) = A [pDz/i2A) + l]2'* if    | pD \ ^ | 2A |,

(2) Foiz) = - .4(1 - h)2"-liz - b)/b     if    | pD | è | 2A \,

where

b=-\D\ {\D\ - [\D\2-4\A\2i2/p-l)Y'2}

+ [2lD(2/p - 1)}.

We mention that the radicand appearing in ô is non-negative, and

| i| ^ 1, for | pD\ ^ | 2A |. If 6 = 0, F0(z) in (2) is to be taken as Dz.

The values of the minimum integrals are easily obtained and are,

for the two forms (1) and (2) respectively,

(4) f   |Fo(i)|'|«fe| = 2t\a\>[\ + \pD/(2A)\*],
J c

(5) f  iFoWl'l&l = 2t|í4|'(i + |ô|2)|ô|-".
Je

If b vanishes (5) reduces to 2ir| D\ ».

Let us now make the transformation w= (z+a)/(l+az), z

= iw — a)/il—5w). In (4) and (5) the left members become

(1 - | a |2)  f \Fo[iw - a)/(l - aw)]-(l - äw)-2l»\"\dw\.
Je

Let us set /(«/) = (1— äw)-2lpFo[iw — a)/(l— äw)], and write /(a)

= A',f'ia) = 1, which gives the relations

(6) A = A'il - \a\2)2l», D =(1 - \a\2)2l*[pil - | a |2) - 2c\A']/p.

The method of proof is to minimize fc\fiw)\ "\dw\ for each of the

two forms with respect to A', and compare the values thus obtained.

PAe case p = 2. We consider first the case p = 2, for which the forms

(1) and (2) coincide and become Dz+A. We have

f \fiw)\2\dw\ = 2x(l-|«|2)-1[M|2 + |P|2]
(7) Jc

_ = 2i(l - | a l2)-^ | .4 |2 + | (1 - | a |2)2 - &A |2].

s S. Kakeya, General mean modulus of analytic functions, Proceedings of the

Physico-Mathematical Society of Japan (3) vol. 3 (1921) pp. 48-58.
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If a = 0 the minimum occurs for .4=0 and is 2tt=<p2(0, 2). If aj^O

then for any modulus of A the minimum of (7) occurs when A has

the same amplitude as a, that is, if A =ka for some k>0, and (7)

becomes

2i(l - | « |2)-x[ | « ¡2(1 +\a\2)k2

- 2\a\2(l - | « |2)2Ä H- (1 — I « |2)*].

The derivative with respect to k vanishes for k = (l — \a\ 2)2(1

+ a 2)~l, which yields as the minimum the value 2tt(1 — |«| 2)s(l

+ a 2)-i=M\<*\, 2).
ienceforth we exclude the value p = 2.

The first form of f(w). ¥ or f(w) corresponding to F0(z) of the first

form we have, with (4) and (6),

I   I f(v>) \p\dw\
(8) Jc' '       '

= 2t(1 - | a \2) | A' \'[\ + | p(\ - | a \2)/(2A') - a I*],

and for our problem this is to be minimized with respect to A'. The

condition | pD\ ^ | 2A \, which shall define the term admissible for the

first form, becomes |/>(1 —|a| 2)/(2.4')—a| =1, which excludes for

the first form the possibility that i4' = 0. If a = 0 the minimum of (8)

subject to the condition on A' occurs for \A'\ =p/2, and is <ps(0, p),

where

(9) U\«\,p) = 2ir-2i-"p"(l -|a|2)(l -|«|)p-

If a^O, for any given modulus of A' the minimum of (8) occurs

when A' is a positive multiple of a, that is, if A' = k'a for some k' >0.

Let us set a = p(i — \a\ 2)/(21«|2); the right member of (8) becomes,

apart from a constant factor,

(10) k'"(l + | a |2) - 2a | a \2k,p~l + a2\a \2k'*~2,

and the condition on A' becomes k'^k{ =p(l — \ct\)/(2\a\).

If />>l + (H-|a|2)1/2 the derivative of (10) with respect to k'

vanishes for no positive value of k'.

U p^l + (i + \a\2)112 the derivative of (10) vanishes for

(11) *'= k°' = C1 - I « l")[<F - 1) I « I + ( I « Ia - F* + 2#)«*]
+ [2[ «| (1 + | «J2)].

We are concerned here with the relation of magnitude of k\ and k¿.

If 1 ̂ F = 1 + Ia! only tne positive root in k¿ gives a positive kó,

and we may show that kó =&i', so that the minimum of (10) occurs
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for A' = Ao and the minimum of (8) is 0i(|a|, p), which is a relative

minimum.

Now suppose p>\ + \a\, so that A0' <k{, and A0' is not an ad-

missible value of A'. Let us write

A' = A' I a I e",        a = \ a \ eiH.

Then (8) is a function of A' and 0. For any value A'>0 the minimum

of (8) occurs for d=00, the maximum occurs for d = do+ir. If we let

¿_g¡(«-»o)_L.e-i(í-6,(i)) the value in (8) becomes, apart from a constant

factor,

4 I a |2(1 + I a |2)A'" - 2p I a |2¿(1 - | a |2)A'^

(12) +p2i\-\a\2)2k'*-2,

and the derivative of (12) with respect to A' is

/>A'"-3[4|a|2(l + |a|2)A'2 - 2\a\2ip - 1)/(1 - |a|2)A'

(13) + pip - 2)il - \ a\2)],

with the values of t between —2 and 2.

If l + |a| <p<2, for each value of t there is one positive zero of

(13). These zeros give the minima of (12) with respect to A' for the

different values of 6. The relative minimum of these minima occurs

for t = 2, or 0=0O, and is not admissible; hence the admissible mini-

mum, if any, occurs where

(14) |#(l-|«|2)/(2^')-a| = l.

If none of these minima is admissible, the admissible minimum of (12)

certainly occurs where (14) holds. In this event (8) reduces to 2x

•2(1 — \a\ 2)\A'\ p for which the minimum subject to (14) occurs for

A' = k{a, and the minimum of (8) is ^3( j «|, p).

If p>2 we have the following situation. For ¿:S0 there is no posi-

tive zero of (13), and (12) increases with respect to A'. For t>0

there are no positive zeros if

p > 1 + 2(1 + I a l2)1'2^ + I a |2) - t2 I a I2]"1'2,

and two positive zeros if this inequality is reversed. The larger of

these zeros gives the relative minimum for a fixed t>0. Again the

minimum of these minima occurs for 0 = 0O and is not admissible. The

admissible minimum again occurs where (14) holds, and gives A'

and </>3(|a|, p) as above.

For/(w) corresponding to the first form of P>(z) the result is there-

fore that the minimum is</>i(|a| ,/>)ifl^/>^l-|-|a|, and is0»(|a|, p)
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if l + |a| <p<2,or p>2.

The second form of f(w). With (5) and (6) we have for the second

form oif(w).

(15) f \f(w)\"\dw\ = 2*-|4|»(l + |i|2)[(l -| «h| él']-1,
Je

with b, A, D as at the start of the proof. We shall mean by admissible

for the second form that the condition | pD\ ^ | 2A |, | ¿>| ̂  1 is satis-

fied.
We consider first the case 1 ̂  p < 2. Let us set

R = \D\ - [\D\2 - 4\A\2(2/p - l)]1'2      (0£R£\D\).

Then

(16) \A\2= (2R\D\ - R2)[2(2/p- l)]-1,

\b\ = R[2\A\(2/p- 1)H

and (15) becomes

2T-2^[(l-|«|2)(2-/»)]-H2|Z)| -R)n

■[\D\(2-p)-R(l-p)j.

Although R = 0 is initially exceptional, (17) is valid also for R = 0.

If a = 0and p = i, (17) has the value 2tt. If a = 0and Kp<2, (17)

is valid and is a function of |.4| alone, since 7> = 1. Its derivative

with respect to |.4| vanishes only for .4=0, in which case the value

of (17) is again 2ir. Hence if <* = 0 and l^p<2, the minimum of

(17) is 2tt.

If «7*0 let us again set

A = k | a | eie,        a = | a | eiH.

The expression in (17) is a function of k and 6. If k = 0 the value of

(17) is constant. For fixed k>0 the derivative with respect to 6 of

the part of (17) involving k and 6 becomes

(18) p(2 - p)(2\D\ - R)>-1d\D\/de.

Now

\D\2 = p~2[p2(l - \a\2yir+2

- 2p(l - | a |2)2'*+i | a \2k(eiie-™ + e-'<»-«o>) + 4 | a \*k2]

so that

2 | ß | -d | Z) | /W - - 2ip-\l - | a |2)2/*+i I a \2k(e^~^ - *-'<•-»•>).
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D\/dk]~K   With
2)2/p + l_2£|«|2].

/dk=-2\a\2/p.

Hence (18) vanishes only if 0=0O or 9=60+ir (since P = 2|P| is not

admissible) so that for a fixed A>0 the minimum of (17) occurs for

0 =0o, the maximum for 0 =6o+tt-

Let us now minimize (17) with respect to A for 0=0O. The deriva-

tive with respect to A of the part of (17) involving A and 0 becomes

p(2\D\ - R)>-*{(1 - p)(R - ¡D\)dR/dk

+ [(2p - 3)R + 2(2 - p) | D | ]d | D \ /dk}.

We have dR/dk= [Rd\ü\ /dk-é\a\ 2A(2/p-l)](P- | D\ )-*. The
case P = | D | is admissible only if p = 1, in which case | pD | = | 2A | ;

this is considered in the discussion of the second form for i^p

<l + |a|. With R*\D\, (19) becomes

p(2\D\- P)"-2(2 -p)[(2\D\-R)d\D\/dk-i\a |2(1 - p)p~lk],

which vanishes for P = 2| D\ — 4(1 — p)\a\ 2k[pd

0=0o the value of D is real and is D = p~1[pil — \a

Only if D>0 will A be admissible, so that d\D

Thus R = 2\D\+2(l-p)k and we have

2\D\ + 2(1 - p)k = \d\ - [|P|2- i\A\2i2/p- l)]1'2.

With \A\ =A|o;| the only possibly valid solution of this equation is

(20) A = (p - 1)(1 - \a\2)2'p+l[ip- 1), + |«|1]-1.

With this value of A the value of \b\ in (16) is computed as \b\

= \a\ /ip — 1), and the value of A in (20) is thus admissible if and

only if \a\ ^p—l, in which case this value of A and 0=0O actually

furnish the minimum, a relative minimum whose value is computed

as ^>2( | « |, p) as given in the statement of the theorem.

It has been shown that the minimum of fiw) of the second form is

<£2(|a|, p) if l<l + \a\ ^p<2, and is 27r if a = 0. We may con-

sistently define ^(0, p)=2ir. Hence the minimum oí fiw) of the

second form is<£2(|a|, p) if 1 + \a\ ^p<2.

Let us consider the second form of fiw) for p > 2. Here we set

R =  [|Z)|2 + 4|yl|2(l - 2/p)}1'2 - |D|.

The value of (15) now becomes

2*.2*-»[(l - | a\2)ip - 2)]-»(2| D\ + P)*"1

■[ip-2)\D\ + ip-l)R].

If a = 0 we have D = \ so that again (21) is a function of \A\ alone,

its derivative with respect to | ̂ 41 vanishes only for .4=0, and the
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minimum value is 2w. If a^O we again set 4 =A|a|eiÄ, a=|a|eií|1.

As in the case p<2, for fixed k the minimum of (21) occurs for

0=0O, and with 6=60 the minimizing value of k is (20). With these

values of 0 and k we have \b\ =\ot\ /(p—1), so that | ¿>| <1 for p>2.

The values of k and 0 are admissible and the minimum for the second

form with p>2 is <p2(\a\, p).

A combination of the results now permits us to state that the

minimum of f(w) of the second form is $2(1 «|, P) whenever l + |a|

UP.
We turn to a discussion of (17) when 1 ̂ /><l + |a|, in which case

we must minimize (17) subject to the condition | pD\ ^ | 24 |. It has

been shown that the relative minimum for fixed k occurs for 0=0O.

For a given 0 the admissible minimum of (17) with respect to k

occurs for some value of k. For that value of k the admissible mini-

mum with respect to 0 occurs either for 6 =90 or where | pD\ = | 24 |.

Among the values of (17) for 0=0O the admissible minimum when

l^p<l + |a| again occurs where | pD\ = 12.41. Hence in any

event the admissible minimum of (17) occurs where | pD\ = \ 241, in

which case (17) reduces to 2^-2(1 — | «| 2)-1|.4 | p, the minimum of

\A\ occurs for A =pa(l — \a\ )(1 — | «| 2)2/p(2|a| )_1, and the mini-

mum value is <b3(\ a\, p), which appears in (9).

The results thus far are the following, with p — 2 again included.

If l^£ = l + |o:|  the minimum is $i(|a|, p) for the first form, and

p)   for  the  second  form.   If />>l-+-|a|   the  minimum   is

, p) for the first form and <fo(|a|, p) for the second form. We

must now compare the two minima for each range of values of p.

I. We wish to show that 0i(|a|, p)<fa(\a\, p) if lg/><l + |a|.
Let

x = ^ + |a|2-|a|(|a|2-/>2-r- 2p)1'2,

y = (p - 1) I a I + ( I a |2 - p2 + 2/>)"2.

Then01(|a|,/»)<0,(|a|,p) if

(1 + |a|)(l + \a\2)-1 < py2l"-l[(l + \ a I2)*]"1'",

which is in turn valid if

log [(1 +|«|)(1 -f- j « Ia)-1] < log [py21"-1^ + \a\2)x}-1''>}.

The two members are equal for /> = l + |a| ; the inequality is there-

fore valid for l^£<l + |ct:| if the derivatives with respect to p

satisfy the reversed inequality, which becomes

0 > log [(1 + |a|2)xy-2]
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since xy—ip — 2)xdy/dp — ydx/dp = 0. The last inequality is valid if

(1 +\a\2)xy-2 < 1.

Now, 2(1 + \a\ 2)x = x2+y2 so that the last inequality is valid if

x2 —y2<0, which can easily be proved if 1 ̂ /><l-f-|a|. The desired

inequality is thus proved.

II. We wish to show here that </>2(|a|, />) <<£3(|a|, p) if p>\

+ \a\. If a = 0 it is easy to see that the inequality holds. If a^O let

p-\=q. Then 0s(|a|, p)<<p3i\a\, p) if

[iq2 + I a \2)/i2q2)]« >  [(1 + | a | )/(<? + 1)]»»,

which is valid if their logarithms are in the same relation:

?[log iq2 + I a |2) - log (292)] >(<? + 1) [log (1 + | a \ ) - log (? + 1)].

The two members are equal if q= \a\ ; hence the inequality is valid

for g>|a| if the derivatives are in the same relation, the resulting

inequality becoming

log iq2 + I a |2) - log (292) - 2 | « |2(?2 + | a |2)-1 + 1

- log (1 + I a I ) + log (q + 1) > 0.

The two members are again equal if q= \a\ ; hence this inequality is

valid for q> | a\ if the derivative of the left member is positive, which

statement may be expressed as

Piq) = q* + 4 I a \2q3 + 2 \ a \»q* - \ a \4q - 2 | a |4 > 0.

The equation Piq) =0 has one variation in sign, hence by Descartes'

rule of signs at most one positive root. But P(0) = — 2|a|4<0, and

P(|«| ) =4|a|5>0, so that there is a positive root, it lies between

q = 0 and q= \a\, and for q> \a\ the last inequality above is valid,

and the proof is complete that 02(|«|, P) <^»3( | «|, p) if q> \a\, or if

p>l + \a\.
The proof of the theorem is now complete.

In conclusion we mention that the minimizing function is unique

except when a = 0, p = l. If£<l-r-|a|, the minimizing function does

not vanish for \w\ J¡1. If />>l + |a|, the minimizing function has a

simple zero within the unit circle.
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