ON THE MINIMUM OF A CERTAIN INTEGRAL

A. SPITZBART

In this paper the following result will be proved.

Let f(w) be an analytic function of w for |w| < 1, continuous for $|w| \le 1$, and let the value $f'(\alpha) = 1$ be prescribed at a point $w = \alpha$ within the unit circle. Among functions of this type, the minimum value of the integral $\int_C |f(w)|^p |dw|$, where $p \ge 1$ and C is the unit circle |w| = 1, is given by

$$\phi_1(|\alpha|, p)$$
 if $1 \le p \le 1 + |\alpha|$, $\phi_2(|\alpha|, p)$ if $p \ge 1 + |\alpha|$,

where

$$\phi_{1}(|\alpha|, p) = 2\pi(1 - |\alpha|^{2})^{p+1}[2(1 + |\alpha|^{2})]^{1-p} \cdot [(p-1)|\alpha| + (|\alpha|^{2} - p^{2} + 2p)^{1/2}]^{p-2} \cdot [p+|\alpha|^{2} - |\alpha|(|\alpha|^{2} - p^{2} + 2p)^{1/2}],$$

$$\phi_{2}(|\alpha|, p) = 2\pi(1 - |\alpha|^{2})^{p+1}(p-1)^{2p-2}[(p-1)^{2} + |\alpha|^{2}]^{1-p}.$$

These minima are attained.

As would be expected the two forms coincide if $p=1+|\alpha|$. If p=1 the first form always applies and the minimum is $\phi_1(|\alpha|, 1)$. For f(w) as in the statement of the theorem we have

$$\int_{C} |f(w)| |dw| \ge \phi_{1}(|\alpha|, 1)$$

$$= 2\pi (1 - |\alpha|^{2})^{2} [|\alpha|^{2} + (1 + |\alpha|^{2})^{1/2}]^{-1},$$

a result which has been proved by Macintyre and Rogosinski.1

If $p \ge 2$ the second form applies and, in particular, for p = 2 the inequality becomes

$$\int_{C} |f(w)|^{2} |dw| \ge \phi_{2}(|\alpha|, 2) = 2\pi(1 - |\alpha|^{2})^{3}(1 + |\alpha|^{2})^{-1}.$$

If $\alpha = 0$ the second form applies so that with f'(0) = 1 we have

$$\int_C |f(w)|^p |dw| \geq 2\pi.$$

We proceed to the proof. By a particularization of a result of

Presented to the Society, August 23, 1946; received by the editors December 2, 1949 and, in revised form, April 14, 1950.

¹ The Edinburgh Mathematical Notes vol. 35, (1945) pp. 1-3.

Kakeya,² of the functions F(z) which are analytic for |z| < 1, continuous for $|z| \le 1$, and with the values F(0) = A, F'(0) = D assigned, the one which minimizes the integral $\int_{C'} |F(z)|^p |dz|$, with $p \ge 1$, C': |z| = 1, is given by

(1)
$$F_0(z) = A \left[pDz/(2A) + 1 \right]^{2/p}$$
 if $|pD| \le |2A|$,

(2)
$$F_0(z) = -A(1-bz)^{2/p-1}(z-b)/b$$
 if $|pD| \ge |2A|$,

where

(3)
$$b = -|D|\{|D| - [|D|^2 - 4|A|^2(2/p - 1)]^{1/2}\} \\ \div [2\overline{A}D(2/p - 1)].$$

We mention that the radicand appearing in b is non-negative, and $|b| \le 1$, for $|pD| \ge |2A|$. If b = 0, $F_0(z)$ in (2) is to be taken as Dz.

The values of the minimum integrals are easily obtained and are, for the two forms (1) and (2) respectively,

(4)
$$\int_{C'} |F_0(z)|^p |dz| = 2\pi |A|^p [1 + |pD/(2A)|^2],$$

(5)
$$\int_{C'} |F_0(z)|^p |dz| = 2\pi |A|^p (1+|b|^2) |b|^{-p}.$$

If b vanishes (5) reduces to $2\pi |D|^p$.

Let us now make the transformation $w = (z+\alpha)/(1+\bar{\alpha}z)$, $z = (w-\alpha)/(1-\bar{\alpha}w)$. In (4) and (5) the left members become

$$(1-|\alpha|^2)\int_{\mathcal{C}} |F_0[(w-\alpha)/(1-\bar{\alpha}w)]\cdot (1-\bar{\alpha}w)^{-2/p}|^p|dw|.$$

Let us set $f(w) = (1 - \bar{\alpha}w)^{-2/p} F_0[(w - \alpha)/(1 - \bar{\alpha}w)]$, and write $f(\alpha) = A'$, $f'(\alpha) = 1$, which gives the relations

(6)
$$A = A'(1 - |\alpha|^2)^{2/p}, D = (1 - |\alpha|^2)^{2/p} [p(1 - |\alpha|^2) - 2\bar{\alpha}A']/p.$$

The method of proof is to minimize $\int_C |f(w)|^p |dw|$ for each of the two forms with respect to A', and compare the values thus obtained.

The case p=2. We consider first the case p=2, for which the forms (1) and (2) coincide and become Dz+A. We have

(7)
$$\int_{C} |f(w)|^{2} |dw| = 2\pi (1 - |\alpha|^{2})^{-1} [|A|^{2} + |D|^{2}]$$
$$= 2\pi (1 - |\alpha|^{2})^{-1} [|A|^{2} + |(1 - |\alpha|^{2})^{2} - \bar{\alpha}A|^{2}].$$

² S. Kakeya, General mean modulus of analytic functions, Proceedings of the Physico-Mathematical Society of Japan (3) vol. 3 (1921) pp. 48-58.

If $\alpha = 0$ the minimum occurs for A = 0 and is $2\pi = \phi_2(0, 2)$. If $\alpha \neq 0$ then for any modulus of A the minimum of (7) occurs when A has the same amplitude as α , that is, if $A = k\alpha$ for some k > 0, and (7) becomes

$$2\pi(1-|\alpha|^2)^{-1}[|\alpha|^2(1+|\alpha|^2)k^2 - 2|\alpha|^2(1-|\alpha|^2)^2k + (1-|\alpha|^2)^4].$$

The derivative with respect to k vanishes for $k = (1 - |\alpha|^2)^2 (1 + |\alpha|^2)^{-1}$, which yields as the minimum the value $2\pi (1 - |\alpha|^2)^3 (1 + |\alpha|^2)^{-1} = \phi_2(|\alpha|, 2)$.

Henceforth we exclude the value p = 2.

The first form of f(w). For f(w) corresponding to $F_0(z)$ of the first form we have, with (4) and (6),

(8)
$$\int_{C} |f(w)|^{p} |dw|$$

$$= 2\pi (1 - |\alpha|^{2}) |A'|^{p} [1 + |p(1 - |\alpha|^{2})/(2A') - \bar{\alpha}|^{2}],$$

and for our problem this is to be minimized with respect to A'. The condition $|pD| \le |2A|$, which shall define the term *admissible* for the first form, becomes $|p(1-|\alpha|^2)/(2A')-\bar{\alpha}| \le 1$, which excludes for the first form the possibility that A'=0. If $\alpha=0$ the minimum of (8) subject to the condition on A' occurs for |A'| = p/2, and is $\phi_3(0, p)$, where

(9)
$$\phi_3(|\alpha|, p) = 2\pi \cdot 2^{1-p} p^p (1-|\alpha|^2) (1-|\alpha|)^p.$$

If $\alpha \neq 0$, for any given modulus of A' the minimum of (8) occurs when A' is a positive multiple of α , that is, if $A' = k'\alpha$ for some k' > 0. Let us set $a = p(1 - |\alpha|^2)/(2|\alpha|^2)$; the right member of (8) becomes, apart from a constant factor,

(10)
$$k'^{p}(1+|\alpha|^{2})-2a|\alpha|^{2}k'^{p-1}+a^{2}|\alpha|^{2}k'^{p-2},$$

and the condition on A' becomes $k' \ge k_1' = p(1 - |\alpha|)/(2|\alpha|)$.

If $p>1+(1+|\alpha|^2)^{1/2}$ the derivative of (10) with respect to k' vanishes for no positive value of k'.

If $p \le 1 + (1 + |\alpha|^2)^{1/2}$ the derivative of (10) vanishes for

(11)
$$k' = k_0' = (1 - |\alpha|^2) [(p-1) |\alpha| + (|\alpha|^2 - p^2 + 2p)^{1/2}] \\ \div [2 |\alpha| (1 + |\alpha|^2)].$$

We are concerned here with the relation of magnitude of k_1' and k_0' . If $1 \le p \le 1 + |\alpha|$ only the positive root in k_0' gives a positive k_0' , and we may show that $k_0' \ge k_1'$, so that the minimum of (10) occurs

for $k' = k_0'$ and the minimum of (8) is $\phi_1(|\alpha|, p)$, which is a relative minimum.

Now suppose $p>1+|\alpha|$, so that $k_0' < k_1'$, and k_0' is not an admissible value of k'. Let us write

$$A' = k' |\alpha| e^{i\theta}, \qquad \alpha = |\alpha| e^{i\theta_0}.$$

Then (8) is a function of k' and θ . For any value k' > 0 the minimum of (8) occurs for $\theta = \theta_0$, the maximum occurs for $\theta = \theta_0 + \pi$. If we let $t = e^{i(\theta - \theta_0)} + e^{-i(\theta - \theta_0)}$, the value in (8) becomes, apart from a constant factor,

(12)
$$4 \mid \alpha \mid^{2} (1 + \mid \alpha \mid^{2}) k'^{p} - 2p \mid \alpha \mid^{2} t (1 - \mid \alpha \mid^{2}) k'^{p-1} + p^{2} (1 - \mid \alpha \mid^{2})^{2} k'^{p-2},$$

and the derivative of (12) with respect to k' is

(13)
$$pk'^{p-3}[4 \mid \alpha \mid^{2}(1 + \mid \alpha \mid^{2})k'^{2} - 2 \mid \alpha \mid^{2}(p-1)t(1 - \mid \alpha \mid^{2})k' + p(p-2)(1 - \mid \alpha \mid^{2})],$$

with the values of t between -2 and 2.

If $1+|\alpha| , for each value of <math>t$ there is one positive zero of (13). These zeros give the minima of (12) with respect to k' for the different values of θ . The relative minimum of these minima occurs for t=2, or $\theta=\theta_0$, and is not admissible; hence the admissible minimum, if any, occurs where

(14)
$$|p(1-|\alpha|^2)/(2A')-\bar{\alpha}|=1.$$

If none of these minima is admissible, the admissible minimum of (12) certainly occurs where (14) holds. In this event (8) reduces to $2\pi \cdot 2(1-|\alpha|^2)|A'|^p$ for which the minimum subject to (14) occurs for $A'=k_1'\alpha$, and the minimum of (8) is $\phi_3(|\alpha|, p)$.

If p>2 we have the following situation. For $t \le 0$ there is no positive zero of (13), and (12) increases with respect to k'. For t>0 there are no positive zeros if

$$p > 1 + 2(1 + |\alpha|^2)^{1/2} [4(1 + |\alpha|^2) - t^2 |\alpha|^2]^{-1/2},$$

and two positive zeros if this inequality is reversed. The larger of these zeros gives the relative minimum for a fixed t>0. Again the minimum of these minima occurs for $\theta=\theta_0$ and is not admissible. The admissible minimum again occurs where (14) holds, and gives A' and $\phi_3(|\alpha|, p)$ as above.

For f(w) corresponding to the first form of $F_0(z)$ the result is therefore that the minimum is $\phi_1(|\alpha|, p)$ if $1 \le p \le 1 + |\alpha|$, and is $\phi_2(|\alpha|, p)$

if $1+|\alpha| , or <math>p > 2$.

The second form of f(w). With (5) and (6) we have for the second form of f(w).

(15)
$$\int_{C} |f(w)|^{p} |dw| = 2\pi |A|^{p} (1+|b|^{2}) [(1-|\alpha|^{2})|b|^{p}]^{-1},$$

with b, A, D as at the start of the proof. We shall mean by *admissible* for the second form that the condition $|pD| \ge |2A|$, $|b| \le 1$ is satisfied.

We consider first the case $1 \le p < 2$. Let us set

$$R = |D| - [|D|^2 - 4|A|^2(2/p - 1)]^{1/2} \quad (0 \le R \le |D|).$$

Then

(16)
$$|A|^2 = (2R|D|-R^2)[2(2/p-1)]^{-1},$$

$$|b| = R[2|A|(2/p-1)]^{-1}$$

and (15) becomes

(17)
$$2\pi \cdot 2^{1-p} \left[(1-|\alpha|^2)(2-p) \right]^{-1} (2|D|-R)^{p-1} \cdot \left[|D|(2-p)-R(1-p) \right].$$

Although R=0 is initially exceptional, (17) is valid also for R=0.

If $\alpha = 0$ and p = 1, (17) has the value 2π . If $\alpha = 0$ and 1 , (17) is valid and is a function of <math>|A| alone, since D = 1. Its derivative with respect to |A| vanishes only for A = 0, in which case the value of (17) is again 2π . Hence if $\alpha = 0$ and $1 \le p < 2$, the minimum of (17) is 2π .

If $\alpha \neq 0$ let us again set

$$A = k \mid \alpha \mid e^{i\theta}, \qquad \alpha = \mid \alpha \mid e^{i\theta_0}.$$

The expression in (17) is a function of k and θ . If k=0 the value of (17) is constant. For fixed k>0 the derivative with respect to θ of the part of (17) involving k and θ becomes

(18)
$$p(2-p)(2|D|-R)^{p-1}\partial |D|/\partial \theta.$$

Now

$$|D|^{2} = p^{-2} [p^{2}(1 - |\alpha|^{2})^{4/p+2} - 2p(1 - |\alpha|^{2})^{2/p+1} |\alpha|^{2} k(e^{i(\theta-\theta_{0})} + e^{-i(\theta-\theta_{0})}) + 4 |\alpha|^{4} k^{2}]$$

so that

$$2 \mid D \mid \cdot \partial \mid D \mid / \partial \theta = - 2ip^{-1}(1 - \mid \alpha \mid^{2})^{2/p+1} \mid \alpha \mid^{2} k(e^{i(\theta - \theta_{0})} - e^{-i(\theta - \theta_{0})}).$$

Hence (18) vanishes only if $\theta = \theta_0$ or $\theta = \theta_0 + \pi$ (since R = 2|D| is not admissible) so that for a fixed k > 0 the minimum of (17) occurs for $\theta = \theta_0$, the maximum for $\theta = \theta_0 + \pi$.

Let us now minimize (17) with respect to k for $\theta = \theta_0$. The derivative with respect to k of the part of (17) involving k and θ becomes

(19)
$$p(2 | D | - R)^{p-2} \{ (1 - p)(R - | D |) \partial R / \partial k + [(2p - 3)R + 2(2 - p) | D |] \partial | D | / \partial k \}.$$

We have $\partial R/\partial k = [R\partial |D|/\partial k - 4|\alpha|^2 k(2/p-1)](R-|D|)^{-1}$. The case R = |D| is admissible only if p = 1, in which case |pD| = |2A|; this is considered in the discussion of the second form for $1 \le p < 1 + |\alpha|$. With $R \ne |D|$, (19) becomes

$$p(2 | D | - R)^{p-2}(2 - p)[(2 | D | - R)\partial | D | /\partial k - 4 | \alpha|^{2}(1 - p)p^{-1}k],$$

which vanishes for $R=2|D|-4(1-p)|\alpha|^2k[p\partial|D|/\partial k]^{-1}$. With $\theta=\theta_0$ the value of D is real and is $D=p^{-1}[p(1-|\alpha|^2)^{2/p+1}-2k|\alpha|^2]$. Only if D>0 will k be admissible, so that $\partial|D|/\partial k=-2|\alpha|^2/p$. Thus R=2|D|+2(1-p)k and we have

$$2|D| + 2(1-p)k = |D| - [|D|^2 - 4|A|^2(2/p-1)]^{1/2}.$$

With $|A| = k |\alpha|$ the only possibly valid solution of this equation is

(20)
$$k = (p-1)(1-|\alpha|^2)^{2/p+1}[(p-1)^2+|\alpha|^2]^{-1}.$$

With this value of k the value of |b| in (16) is computed as $|b| = |\alpha|/(p-1)$, and the value of k in (20) is thus admissible if and only if $|\alpha| \le p-1$, in which case this value of k and $\theta = \theta_0$ actually furnish the minimum, a relative minimum whose value is computed as $\phi_2(|\alpha|, p)$ as given in the statement of the theorem.

It has been shown that the minimum of f(w) of the second form is $\phi_2(|\alpha|, p)$ if $1 < 1 + |\alpha| \le p < 2$, and is 2π if $\alpha = 0$. We may consistently define $\phi_2(0, p) = 2\pi$. Hence the minimum of f(w) of the second form is $\phi_2(|\alpha|, p)$ if $1 + |\alpha| \le p < 2$.

Let us consider the second form of f(w) for p > 2. Here we set

$$R = \left[|D|^2 + 4 |A|^2 (1 - 2/p) \right]^{1/2} - |D|.$$

The value of (15) now becomes

(21)
$$2\pi \cdot 2^{1-p} \left[(1-|\alpha|^2)(p-2) \right]^{-1} (2|D|+R)^{p-1} \cdot \left[(p-2)|D|+(p-1)R \right].$$

If $\alpha = 0$ we have D = 1 so that again (21) is a function of |A| alone, its derivative with respect to |A| vanishes only for A = 0, and the

minimum value is 2π . If $\alpha \neq 0$ we again set $A = k |\alpha| e^{i\theta}$, $\alpha = |\alpha| e^{i\theta_0}$. As in the case p < 2, for fixed k the minimum of (21) occurs for $\theta = \theta_0$, and with $\theta = \theta_0$ the minimizing value of k is (20). With these values of θ and θ we have $|b| = |\alpha|/(p-1)$, so that |b| < 1 for p > 2. The values of θ and θ are admissible and the minimum for the second form with $\theta > 2$ is $\theta_2(|\alpha|, p)$.

A combination of the results now permits us to state that the minimum of f(w) of the second form is $\phi_2(|\alpha|, p)$ whenever $1+|\alpha| \le p$.

We turn to a discussion of (17) when $1 \le p < 1 + |\alpha|$, in which case we must minimize (17) subject to the condition $|pD| \ge |2A|$. It has been shown that the relative minimum for fixed k occurs for $\theta = \theta_0$. For a given θ the admissible minimum of (17) with respect to k occurs for some value of k. For that value of k the admissible minimum with respect to θ occurs either for $\theta = \theta_0$ or where |pD| = |2A|. Among the values of (17) for $\theta = \theta_0$ the admissible minimum when $1 \le p < 1 + |\alpha|$ again occurs where |pD| = |2A|. Hence in any event the admissible minimum of (17) occurs where |pD| = |2A|, in which case (17) reduces to $2\pi \cdot 2(1 - |\alpha|^2)^{-1}|A|^p$, the minimum of |A| occurs for $A = p\alpha(1 - |\alpha|)(1 - |\alpha|^2)^{2/p}(2|\alpha|)^{-1}$, and the minimum value is $\phi_3(|\alpha|, p)$, which appears in (9).

The results thus far are the following, with p=2 again included. If $1 \le p \le 1 + |\alpha|$ the minimum is $\phi_1(|\alpha|, p)$ for the first form, and $\phi_3(|\alpha|, p)$ for the second form. If $p>1+|\alpha|$ the minimum is $\phi_3(|\alpha|, p)$ for the first form and $\phi_2(|\alpha|, p)$ for the second form. We must now compare the two minima for each range of values of p.

I. We wish to show that $\phi_1(|\alpha|, p) < \phi_3(|\alpha|, p)$ if $1 \le p < 1 + |\alpha|$. Let

$$x = p + |\alpha|^2 - |\alpha| (|\alpha|^2 - p^2 + 2p)^{1/2},$$

$$y = (p-1) |\alpha| + (|\alpha|^2 - p^2 + 2p)^{1/2}.$$

Then $\phi_1(|\alpha|, p) < \phi_3(|\alpha|, p)$ if

$$(1 + |\alpha|)(1 + |\alpha|^2)^{-1} < py^{2/p-1}[(1 + |\alpha|^2)x]^{-1/p},$$

which is in turn valid if

$$\log \left[(1 + |\alpha|)(1 + |\alpha|^2)^{-1} \right] < \log \left\{ p y^{2/p-1} \left[(1 + |\alpha|^2) x \right]^{-1/p} \right\}.$$

The two members are equal for $p=1+|\alpha|$; the inequality is therefore valid for $1 \le p < 1+|\alpha|$ if the derivatives with respect to p satisfy the reversed inequality, which becomes

$$0 > \log \left[(1 + |\alpha|^2) x y^{-2} \right]$$

since xy - (p-2)xdy/dp - ydx/dp = 0. The last inequality is valid if $(1 + |\alpha|^2)xy^{-2} < 1$.

Now, $2(1+|\alpha|^2)x=x^2+y^2$ so that the last inequality is valid if $x^2-y^2<0$, which can easily be proved if $1 \le p < 1+|\alpha|$. The desired inequality is thus proved.

II. We wish to show here that $\phi_2(|\alpha|, p) < \phi_3(|\alpha|, p)$ if $p > 1 + |\alpha|$. If $\alpha = 0$ it is easy to see that the inequality holds. If $\alpha \neq 0$ let p-1=q. Then $\phi_2(|\alpha|, p) < \phi_3(|\alpha|, p)$ if

$$[(q^2 + |\alpha|^2)/(2q^2)]^q > [(1 + |\alpha|)/(q + 1)]^{q+1},$$

which is valid if their logarithms are in the same relation:

$$q[\log (q^2 + |\alpha|^2) - \log (2q^2)] > (q+1)[\log (1+|\alpha|) - \log (q+1)].$$

The two members are equal if $q = |\alpha|$; hence the inequality is valid for $q > |\alpha|$ if the derivatives are in the same relation, the resulting inequality becoming

$$\log (q^2 + |\alpha|^2) - \log (2q^2) - 2 |\alpha|^2 (q^2 + |\alpha|^2)^{-1} + 1 - \log (1 + |\alpha|) + \log (q + 1) > 0.$$

The two members are again equal if $q = |\alpha|$; hence this inequality is valid for $q > |\alpha|$ if the derivative of the left member is positive, which statement may be expressed as

$$P(q) = q^{5} + 4 |\alpha|^{2}q^{3} + 2 |\alpha|^{2}q^{2} - |\alpha|^{4}q - 2 |\alpha|^{4} > 0.$$

The equation P(q)=0 has one variation in sign, hence by Descartes' rule of signs at most one positive root. But $P(0)=-2|\alpha|^4<0$, and $P(|\alpha|)=4|\alpha|^5>0$, so that there is a positive root, it lies between q=0 and $q=|\alpha|$, and for $q>|\alpha|$ the last inequality above is valid, and the proof is complete that $\phi_2(|\alpha|, p)<\phi_3(|\alpha|, p)$ if $q>|\alpha|$, or if $p>1+|\alpha|$.

The proof of the theorem is now complete.

In conclusion we mention that the minimizing function is unique except when $\alpha = 0$, p = 1. If $p < 1 + |\alpha|$, the minimizing function does not vanish for $|w| \le 1$. If $p > 1 + |\alpha|$, the minimizing function has a simple zero within the unit circle.

University of Wisconsin in Milwaukee