ON A THEOREM OF RADSTRf)M
P. ERDOS

The purpose of this note is to give a new and simplified proof of
the following theorem.

THEOREM. Let f(z) = Y o, a,2’ be an entire function. Denote M(r)
=max;<r |f(z)l. Assume that lim sup log M(r)/r= «. Then there
exists w,, v=0,1, - - -, with Iw,l =1, so that the origin is a limit point
of the roots of the derivatives of k(2) = Y oo w,a,2".

In other words the theorem holds if the order p of f(2) is greater
than 1 or if p=1 and f(z) is of maximal type.

This theorem is due to R&dstrom and was proved by him for the
case p>1 in a recent note.! The result as announced here is best
possible with respect both to order and to type, as is shown by the
example e, where ¢ is a constant (cf. footnote 1, p. 400).

We need the following two lemmas.

LEMMA 1. Let D2, a,2" be a power series with radius of convergence
R < » and such that |ao/a1| < R. Then 1t is possible to find wo, w, *
with |w,| =1 so that Y ., w,a,2 has a zero z, with |20| <|ao/ai|.

ProOF. We put wo=w; =1 and ao+a12=P,(3). Obviously P;(z) has a
zero with the required property. We proceed by induction. Suppose
that we have succeeded in determining wo, w1, + * -, wa—1 such that
the polynomial P, ()= D -5 w,a,2” has a zero 2 with |zo|
<|ao/ai|. Consider P,_i(2) +wa.z", |w| =1. Three cases may occur:

1. The equation | P,_1(2)| =]|@.2"| has a solution on |z| =|ao/ai].

2. | Pa_s(2)| >|anz?| for all 2 with | 2| =] ao/ai].

3. | P.a(2)| <|anzr| for all z with | 2| =|ao/ai].

In case 1, it will obviously be possible to choose w so that P,_i(2)

+wa,z"=0 on the circle |z| =|ao/ai|. In case 2, Pn_1(2) +wanz" has
by Rouché’s theorem as many zeros inside the circle |z| =|ao/ai
as P,_i(z), that is, at least one, by the induction hypothesis. In case
3, again by Rouché’s theorem, P,_(2)+wa,2" has as many zeros in
|2| =|ao/a1| as aaz", that is, n zeros. In all these cases we can there-
fore choose w=uwy, Iwn =1 so that P,_;(2) +a,w.2z" has a zero in the
circle | 2| =|ao/a:|. Consider now the power series D%, w,a,2.
We know that all its partial sums have zeros in or on the circle
|z| = Iao/a1| . As this circle is strictly inside the circle of convergence
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the same must hold for the infinite series, which proves the lemma.

LEMMA 2. Let Y, a,3" satisfy the conditions of Lemma 1, and let
€ be a positive number. Then there exists an integer n and numbers
Wo, W1, * ° *, Wy With |w.| =1 such that the series E?_o w,a,2” has a
zero in the circle || <|ao/a.| +e, irrespective of the choice of the num-
bers w, for v=n+1.

ProOF. Let 7 be a number with |ao/a;| <r <min (R, |ao/a:| +e¢)
and such that the series f(z) = D>, w,a,2’ constructed in Lemma 1
has a positive minimum m on the circle |z| =7. Putd,= > 2,.|a)| 7.
We have 8,—0 monotonically. Choose # so large that 2-8,<m, and
let g(z) be any series which coincides with f(2) in the first n+1 terms
whereas in the rest of the terms arbitrary changes of the arguments
are allowed. Obviously | g2(2) — f(z)| <2-8, for |zl =<r. Therefore, by
Rouché’s theorem, g(z) has as many roots in z| =<r as f(3), that is,
at least one (since 7 >|ao/a;|). This proves the lemma.

In order to prove the theorem we first observe that if
lim sup log M(r)/r= =, it follows that lim inf |a,./(n+1)a,.+1| =0,
for otherwise there would exist a 2>0 such that for all sufficiently
large n, an1 <ka,/(n+1). Iterating this we would get, for sufficiently
large n, a, <ck*/n!, which as is well known implies lim sup log M(r)/r
=<k, an evident contradiction. Therefore there exists a sequence #,
of integers such that @,.,/(n+1)(as,41)—0. We also observe that
f™(2)/n!'=a,+(m+1)asiz+ - - -. Now choose a sequence ¢ of
positive numbers with ¢,—0. According to Lemma 2 we can find
numbers wn,, Way41, * * * , Wayrp, SO that if in f™)(z)/n,! we multiply
each coefficient with the corresponding w, we shall get a function
which has a zero in |z| < |a,.1/ (n1+1)a,.,+1| ~+e€, and we shall still
be able to choose w, arbitrarily if u>mn;+4p; without destroying this
property. Therefore we can repeat this process, now starting with the
smallest n,>n;+p;. Call that number m, and put m;=n;. Then we
get a new set of W's, Wy, * * *, Wmyipy and if p>me+py we still have
the free choice of the w,. Iterating this process we shall obtain a
sequence of nonoverlapping blocks of w’s and we complete it if neces-
sary by choosing w, arbitrarily for those » which do not correspond
to an w in a block. In this way we get a sequence wo, wy, * - - and we
construct the corresponding power series k(z) = Y >, ®,a,2”. From
the construction and Lemma 2 it is then obvious that k(z) will have
the property: k™ (2) has a zero z, satisfying z,< | am,/ (m,+1)a,.,;.1|
+¢,. As the sequence m, is a subsequence of #, and ¢,—0, it is clear
that z,—0, which proves the theorem.
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