
CERTAIN PROPERTIES OF FUNCTIONS HARMONIC
WITHIN A SPHERE
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1. Introduction.1 Let 5 be the sphere of radius a about the origin

O of the rectangular coordinate system (x, y, z). Let V be the interior

of 5. Let U= £/(x, y, z) = ¿7(r, 9, 4>) be the function, harmonic in V,

given by the Poisson integral of w(0, c6) over S,

a2-r2 c C   «(0 r     i

(1-" M—srif.m*     {'-[0Pi)-
where w(0, 4>)EL on 5. When the relation (1.1) holds between {/and

u, we write U = piu).

The following Theorem I extends to three dimensions results ob-

tained by Douglas for two dimensions (see [2, pp. 307-311 ]).2

Theorem I. Let w(P) EL on S and U be the function, harmonic in V,

such that U = piu). Let P„ (cos 6) and P™(cos 0) be respectively the

Legendre polynomial of order n, and the associated Legendre function

of the first kind. Denote the Laplace expansion of u on S by

U(fl, <t>) ~   È     AnPniC0S 0)
n=0 L

n

+ 2~1 (-4n.m cos m<t> + Bn.m sin m<t>)P„ (cos 0)
m=l

Then, if any one of the three numbers

A[U]= fff \VUiP)\2dVP,

«11       *   CC M    CC   [<M)-ujN)}2
B[u] = 7j)sdSMJL—[¡«Fir—Ä"

Presented to the Society, December 31, 1947, under the title An integral formula

for harmonic functions; received by the editors January 30, 1950.

1 The results of this paper appear in Part I of the author's thesis prepared under

the direction of Professor J. J. Gergen and submitted in April, 1949, to the Graduate

School of Arts and Sciences of Duke University in partial fulfillment of the require-

ments for the degree of Doctor of Philosophy. Theorem I was first stated by the

author in Bull. Amer. Math. Soc. Abstract 54-3-139 presented to the American

Mathematical Society.

2 Numbers in brackets refer to the bibliography at the end of the paper.
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.  ,       "     2irna  f     2        »   (n + m) !     2 2     1
C[«) = £ ^—7  2^„ + E 7--r 04».» + S».»)  ,

„_1   2« +  1 L m=l   (»  - »«) ! J

¿s finite, the other two are finite and all three are equal.

It has been shown by Bray and Evans [l, pp. 179-180] that, if

U(P) is harmonic in V, and if A [U] < + <*>, then there exists u(6, <p)

EL on S such that U = p(u). The following theorem is an immediate

corollary of Theorem I and this result of Bray and Evans.

Theorem II. Let U(P) be harmonic in V. Then A[U] is finite if,

and only if, there exists a function u(0, <p) belonging to L on S such that

U = p(u) and B\u\ is finite.

The final result of this paper is Theorem III which establishes an

inequality similar to one developed by J. Hadamard [3, pp. 135-138]

for the analogous two-dimensional case.

Theorem III. (a) Let u(P)EL on S. Let W(P)EC in V, and sup-

pose that W-m, r^>a~, on almost all radii of S. Then, A[U]^A[W]

where U=p(u).

(b) Further, the inequality holds, unless A [U] = + °°, or U is

identical with W.

2. Lemma for Theorem I. The proof of Theorem I depends on the

following lemma.

Lemma 1. For M on S, and P in V, put

F{p'M) = w {r = {0P])'

Let G(P, M) denote the radial derivative at P of F(P, M), regarded as a

function of P:

d -2r        3(a2 - r2)
(2.1) G(P, M) = —F(P, M) =-:-:-r— cos (¿OPM).

dr [PM]3 [PM]*

Denote by Sr the sphere of radius r about o. Put

(2.2) H(r, M,N) =  f f F(P, M)G(P, N)dSP.

Then there exists a constant K, such that

(2.3) [MN]3\ H(r, M,N)\úK

for M, N on S, 0<r<a. Further, if M, N are on S, M^N, then
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(2.4) fc,fc „.„__*£.

Proof. For P in V, [OP] = r, and M, N on S, we have

(2.5) F(P, M) =—'Z(2k+l)Pk(cosZMOP)(—) ,
a *_o \ a /

1 A /r\k~l
(2.6) G(P, N) = — £*(2*+l)P/t(cosZiVOP)( — )     .

a2 fc=i \ a /

For ?• held fast, 0<r<a, and J7, N fixed on S, these series are uni-

formly convergent for P on Sr. Making use of the formulas,

f f  Pj(cos Z MOP)Pk(cos Z NOP)dSp

(0 (j * A),
= <   lirr2

\^riPk(cos¿MON)(j= k),

we obtain for 0<r<a,

4irr " / r \2*
(2.7) H(r,M,N)=-£ ¿(2¿ + l)P*(cos Z MCW) ( —)   .

a2 «,=1 \ a /

Let p = r2/a; let Ç be the point of intersection of [OM] and S.

From (2.7) and (2.6), we get

(2.8) 77(r, M, N) = 4* — («p)1'*?©, AT).
a

Hence, by (2.1),

p r     2 3(a2 - p2) 1
(2.9) H(r,M,N) - - 4r —(ap)1'*   -- + -^-r-^ cos ZOQtf

o L [ÇA7]3        [qnY J

from which (2.4) follows. Further, from the equality

[QN]2 = (a - p)2 + — [MA7]2
a

we obtain, for 0<r<a,  [M^âtd/p)1'2^], a-pg[£W]. These

inequalities with (2.9) give

I H(r, M, N) ■ [MN]31 ̂  4tt — (ap)1/2     *    • [MN]3 = 32*-a2.
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3. Proof of Theorem I.
(A) We assume first that

(3.1) B[u] < + oo.

We prove, under this hypothesis, that

(3.2) A[U] = B[u].

Under (3.1), for almost all points M on S, the integral

(3.3) ff   !»<*>-«Wl'fe
JJs [MN]3

exists as a finite number. Selecting any point M for which (3.3) is

finite, we get

rr rr [«M - «(a7)]2
îl-'mdS" S WJ). \MNY        *'

+ 8*-a2w2(M) < + oo.

Thus uEL2 on 5.

Now let wi(P), w2iP)EL on 5. Let Wi(P) = />(wi). Wt(P) = />(«*).

By Green's theorem, if Vr is the interior of the sphere Sr, 0<r<a,

(3.4) fff  VWi-VWidV -  ff   IFi(P) — !F2(P)<iSp.

Thus

rrr v-ww^f-

=- ff  ¿S/> f f F(P, M)wl(M)dSM ( ( GiP, N)w2iN)dS»,
16ir2a2 J J sr        JJs JJs

which by (2.2) and Fubini's theorem can be written

fff  VWrVW2dV

— ffdSM f f WiiM)w2iN)Hir, M, N)dSH.
r2a2 JJs        JJs

(3.5)

107T-tt- o ./ s

Applying (3.5) in the three cases:

(a) wi = w2, (b) Wi = 1, (c) wi = m,

»2 =1, w2 = M2, a>2 = «,
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we obtain

0 =-—- f f dSM f f u2(M)H(r, M, N)dSN,
32ir2a2 J J s        J J s

0 = ^TTT ( f Mm f( u2(N)H(r, M, N)dSN,
32r2a2 J J s        J J s

f f f   | VU | W = -— f f dSM ff 2u(M)u(N)H(r, M, N)dSN.

From these three equalities, we get

(3.6) Ar[U] = - —— f f dSM f f \u(M) - u(N)}2H(r, M, N)dSN,
32w2a2 J J s       J J s

where Ar[U] = ///V,| VU\ 2dV.
From (3.6), (3.1), Lemma 1, and Lebesgue's theorem, we get

(3.7) £ A.[V] - iff *>$$,**££** **
Since lim r,0- ^r[i/] =A [U], the truth of (3.2) follows.

(B) We now assume

(3.8) A[U] < + «o.

We prove that (3.8) implies (3.1). The function U(P) is harmonic in

V. Hence, if r is held fast, 0<r <a, it follows that U(M') - U(N') is

bounded by a constant multiple of [M'A77] for M', N' on Sr. Thus

„0x    i rr ,,   rr   [t/(M') - ¿/(at)]2
(3.9) — II    dS^- I  I      -f———=-■ dSN- < + ».

AxJJb, JJSr [M'A7']3

Accordingly, by what we proved in (A),

47rJJsr 'JSr [M'A7']3

which can be written

(3.10) Mu] = --])J)s-p^-äSMdS„

where M', A7' are the intersections of [OM], [ON], with Sr. We have
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UiM')—miM), r^>a~ for almost all points M of S. Thus, by Fatou's

lemma, we get

B[u] = — f f iSu f f lim inf {— j- XdSN
AttJJs        JJs   r-*-     U [MN]* j

£\imiaiAr[U]=A[U]< + *>,
r-*a~

which is (3.1).

(C) To complete the proof of Theorem I it suffices to show that

(3.12) A[U]=C[u]

for A [U], C[u] finite or +0°.

We have, for Pir, 0, <p) in V,

U{P) = Ê M«P.(cos 0)

(3'13)

+ E (-4n,m cos nup + Bn.m sin m<t>)pñ icos 0)   ( — ) .
m-i J\a /

The series (3.13) for (7(P) and the series for dU/dr obtained by

termwise differentiation of (3.13) are uniformly convergent series of

spherical harmonics for r held fast, 0<r<a. By substituting these

series for Í7and dU/dr in (3.4), by using the orthogonality properties

of spherical harmonics, and by using the formulas for computing

the coefficients of the Laplace series, we get

"     2amr  r     2        "   in + m) !     2.    .        "     2anir   F     2 "    (» + i») !      2

Ar[U]   =   2Z   ——\ 2An +   E-^- iAn
n-1 2w + 1 L m-I (« — m) !

(3.14)

':-)](7)
2n+l

+ b:

Since Iimr,«- Ar[U]=A[U], the proof of (3.12) for A[U], C[u]

finite or + =o follows from (3.14) and Abel's lemma. This completes

the proof of Theorem I.

4. Lemma for Theorem III. We base the proof of Theorem III

on the following lemma.

Lemma 2. Let WEC" in a domain containing S+V. Then

irr      re Wím) - wín)]2
(4-1)   'M-ç/J.*//,-iïW—*3"6-^1
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Proof. Let U=p(W). We can write U= U1+U2, where Ui [U2]

is a potential of simple [double] distribution of class C" on 5 (see

[4, p. 241 ]). It follows that Ui and U2 are continuously differentiable

on S+ V (see [4, pp. 160-172]). Hence, in particular, U has bounded

first partial derivatives in V. We have, for 0<¿><c,

Ab[W] = Ab[W - U] + Ab[U] + 2 f f f   VU-V(W - U)dV

= Ab[W - U] + Ab[U] + 2 ff   —(W- U)dS,
J J sb   dr

by Green's theorem. Hence

(4.3)

Ab[U]^Ab[W] + 2\   ff  -(W - U)dS
I J J sb dr

\ r r du
^A[W] + 2\   I  I    -(W - U)dS

J J s,,  dr

We know that W— U is continuous on V+S, and vanishes on S,

and U has bounded first partial derivatives in V. Hence,

dUC C   dU
\ \   — (W - U)dS -^0 (b -» or).

J J Sk  dr

Further, Ab[U]^>A [U], b^>a~. It follows from (4.3) that

(4.4) A[U]£A[W],

By Theorem I, we have

(4.5) A[U] = B[W],

since U — p(W). The lemma follows from (4.4) and (4.5).

5. Proof of Theorem III. (a) Suppose 0<e<a. For n>3ll2/(a-b),

put

/I+l/» py+Hn pz+lln

dx j dy j W(x, y, z)dz.

Then Wn is of class C" in a domain containing Sb+ Vb. Hence, by

Lemma 2,
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Now WniM)—>WiM), W-+0O, on Sb; and the first partial derivatives

of Wn tend uniformly to those of W in Vb. Hence,

(5.2) Bh[W] é liminf Bb[Wn],

by Fatou's lemma, and

(5.3) Ab[W] « liminf Ah[Wn].
n—+»

Thus,

(5.4) Bb[W] ^ liminf Bb[Wn] g lim inf Ab[Wn] ^ Ab[W],
n—*« m—*«

by (5.1), (5.2), and (5.3). It follows that

(5.5) Bb[W] ÚA[W],

since Ab[W]èA [W].

Now Pi [IF] may be written

km     R[wi     i  ft rr       rr [wjMb) - wjNb)}2
(5.6)       ^[W]^--Jj   dSKjJ    - dSN,

where Mb and Nb are the intersections of [Oil/] and [ON] with 56.

But WiMb)—*uiM), b—hit for almost all points M of S. Thus, by

Fatou's lemma, and (5.5), we get

(5.7) B[u]%A[W].

By Theorem I, (5.7) implies A [U] ^ A [ W] which completes the

proof of part (a).

(b) Assume A [U] < + oo, and U^W. Then we have 0

<A[iU-W)/2]. Put Wi = iU+W)/2. Then Wi satisfies the condi-
tion imposed on W in (a). Hence, by (a), A [U] ¿A [Wi]. Thus,

A[U] á 2A[Wi] - A[U]

< 2A [Wi] + 1A [iU - WO/2] - A [U]

(5.8) = 2A [iU + WO/2] + 2.4 [(£/ - W)/2] - A [U]

= A[U] +A[W] - A[U]

= A[W],

or A [U] <A [W]. This completes the proof of Theorem III.
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NON-MEASURABLE SETS AND THE EQUATION

f(x+y)=f(x)+f(y)

ISRAEL HALPERIN

1. A set of S real numbers which has inner measure m*(S) dif-

ferent from its outer measure m*(S) is non-measurable. An extreme

form, which we shall call saturated non-measurability, occurs when

ra*(S)=0 but m*(SM)=m(M) for every measurable set M, m(M)

denoting the measure of M. This is equivalent to: both S and its

complement have zero inner measure.

More generally, if a fixed set B of positive measure is under con-

sideration, a subset S of B will be called s-non-mble. if both 5 and its

complement relative to B have zero inner measure. This implies

m*(S)=0, m*(S)=m(B) but is implied by these conditions only if

m(B) is finite.

Our object, in part, is to show that if B is either the set of all

real numbers or any half-open finite interval, then for every infinite

cardinal k^C (the power of the continuum), B can be partitioned

into k disjoint subsets which are s-non-mble. and are mutually

congruent under translation (modulo the length of B in the case that

Tí is a finite interval). Sierpinski and Lusin1 have partitioned B into

continuum many disjoint 5-non-mble. subsets but they are not con-

structed to be congruent under translation. Other well known con-

structions do partition B into a countable infinity of mutually

congruent non-measurable subsets, but the subsets are not con-

structed to be saturated non-measurable.2

Presented to the Society, September 10, 1948 under the title Hamel's basis and

non-measurable sets; received by the editors December 5, 1949 and, in revised form,

March 20, 1950.

1 C. R. Acad. Sei. Paris vol. 165 (1917) pp. 422-424.

1 See Hahn and Rosenthal, Set functions, University of New Mexico Press, 1948,

pp. 102-104. The construction of §8.3.3 on p. 102 (as will be shown below) does give

an i-non-mble. set but this is not proved there.


