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reasonable, then condition (9.18") is more stringent than (9.18')

and we therefore regard it as the critical condition regarding the rela-

tive precision of the approximate inverse.

Considering the precisions (7.17.a)-(17.17c), we find that (9.18")

becomes

(9.19.a) n < 19,

(9.19.b) n < 86,

(9.19.c) «<400.
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ON SERIES OF WALSH EIGENFUNCTIONS
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Walsh [4]1 considered expansions in terms of eigenfunctions satis-

fying the equation

u"(x) + [p2 - g(x)]u(x) = 0, OS irai,

and the boundary conditions

«(0) = 0,       «(1) = 0,

the function g(x) being assumed continuous on Ogxgl. He used the

asymptotic formula for the £th eigenfunction

(1) **(*) = (2)1'2[sin kirx + (\/k)$k(x)},        I <l>k(x) I è C.

Comparing series of these functions with corresponding series of

the functions

(2) uk(x) = (2)1'2 sin krx,

he proved that if a function in L2 is expanded in terms of both sets of

functions, then the series of term-by-term differences converges uni-

formly and absolutely to zero on O^xéí.

This result, as Walsh points out, is closely related to that of Haar

[l], who considered the Sturm-Liouville problem with boundary

conditions u'+Hu = 0, and compared the series of the resulting func-

tions with the Fourier cosine series. He obtained equiconvergence in
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1 Numbers in brackets refer to the references cited at the end of the paper.
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the sense that the sequence of differences of partial sums approaches

zero. While this is weaker than the absolute equiconvergence of

Walsh's theorem, Haar's result is valid for expansions of a broader

class of functions, namely, all Lebesgue-integrable functions.

We show here that a result of equal scope may be deduced for

Walsh's problem, if the method of Haar is used; for the latter method

depends principally on the boundedness of the "difference-kernel,"

which may be shown readily.

Theorem. 7/ a Lebesgue-integrable function on the interval 0 ^ x ^ 1

be expanded in terms of Walsh's functions (1) and the sine functions (2),

then the two series are uniformly equiconvergent on the interval.

The Dirichlet kernel for the Walsh functions is

n

Dnix, S)   =   2^2 Ûkix)ûkis).
k=l

By using the asymptotic formula (1) we see that the difference be-

tween this kernel and the corresponding kernel for the sine functions

(2) is of the form

"M*, s) *m Dnix, s) - £>„(*, s)

"  /faix) sin Airs      fais) sin kirx      faix)fais)\

-2k\~r ~+~ T" -+--*/
This difference-kernel is readily seen to be bounded independently of

n, x, and 5.

Now we use the Riemann-Lebesgue theorem in the following form

given by McShane [2, p. 231]:

If 7 is a closed interval and {gnix)} a sequence of functions such

that

(i) all the gnix) have the same bound on I;

(ii) each gnix) is measurable on /;

(iii) on each subinterval Io of I,

lim   I    g„ix)dx = 0;
H-.«    J/„

then for every/(x) summable over I, and for each subinterval Ia of /,

Km   Í   fix)gnix)dx = 0.
n-»«o   t//0

We use for gn(s) in this theorem the difference-kernel ^„(x, s), x
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being a fixed point on the interval 7: [O, l]. Condition (iii) follows

from Walsh's result applied to the characteristic function of the sub-

interval 7o, this function being of integrable square. So we have for

any function/(x) summable over 7

lim   I  f(s)$n(x, s)ds = 0,

this limit, moreover, being approached uniformly with respect to x

on account of the corresponding uniformity in conditions (i) and (iii).

The theorem follows.

The results of Haar [l] were extended to double series by Mitchell

[3]. We note here that the theorems on equiconvergence and equi-

summability between the double Fourier cosine series and the double

Sturm-Liouville (Haar) series which she obtains hold likewise be-

tween the double sine series and the double Walsh series. Her proofs

go through practically unchanged; the formulae for the kernels of the

cosine series and of the sine series are alike except for a sign which

does not affect the argument, and the difference-kernels, as mentioned

previously, are bounded in both cases.
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