LINEAR INDEPENDENCE IN ABELIAN GROUPS ## MARY-ELIZABETH HAMSTROM Alexandroff and Hopf¹ offer a proof of the following theorem.² If U is a sub-group of an Abelian group J and m is an integer such that m=0 or $m \ge 2$, then $r_m(J) \ge r_m(U) + r_m(J-U)$. The proof is incorrect and the following example shows that the theorem is, in fact, not true. Example 1. Let J be the group of integers mod 4, and U the subgroup generated by 2; $r_2(J) = 1$, $r_2(U) = 1$, $r_2(J - U) = 1$. The proof referred to is correct if m=0, and the authors, in fact, prove that $r_0(J)=r_0(U)+r_0(J-U)$. In what follows we shall assume this, and that all groups considered are finitely generated and Abelian.³ THEOREM 1. If (1) the group $V = \sum_{j=1}^{r} N_j$ is the direct sum of indecomposable cyclic sub-groups, N_j , (2) $m = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \cdots \cdot p_n^{\alpha_n}$, where for each i, p_i is a prime number, and (3) for each i, q_i is the number of the N_j whose orders are divisible by $p_i^{\alpha_i}$, then $r_m(V) = k$, where k is the least of the q_i .⁴ PROOF. We can assume, without loss of generality, that $q_1 \leq q_2 \leq \cdots \leq q_n$. The problem, then, is to show that $r_m(V) = q_1 = k$. Clearly, V is a direct sum $V = \sum_{1}^{k} V_i + \sum_{k+1}^{l} V_i$ where for each i, V_i is cyclic and (1) if $1 \leq i \leq k$, V_i has order divisible by m, (2) if $k+1 \leq i \leq l$, V_i has order not divisible by $p_1^{\alpha_1}$. For each i, let x_i be a generating element for V_i . The x_i form a basis for V and $k \leq r_m(V)$. Suppose y_1, y_2, \dots, y_{k+1} is a set of k+1 elements in V. For each i, (1) $$y_i = \sum_{j=1}^k a_{ij} x_j + \sum_{j=k+1}^l a_{ij} x_j.$$ For each *i*, the order of $\sum_{j=k+1}^{l} a_{ij}x_j$ is not divisible by $p_1^{\alpha_1}$, so there exist constants r_1, r_2, \dots, r_{k+1} , no one of which is divisible by $p_1^{\alpha_1}$, Received by the editors May 9, 1949 and, in revised form, May 8, 1950. ¹ P. Alexandroff and H. Hopf, Topologie, Berlin, 1935, p. 572. ² The elements x_1, x_2, \dots, x_n of an Abelian group J are said to be linearly independent mod m if $\sum_{i=1}^{n} a_i x_i = 0$, where the a_i are integers, implies that $a_i \equiv 0 \mod m$ for each i. The rank mod m of J, $r_m(J)$, is the largest integer n such that there exists a set of n elements in J which are linearly independent mod m; $r_0(J)$ denotes ordinary rank. ⁸ We shall assume, further, that $r_m(J)$ is finite. Theorems 2 and 3 of this paper are true without the condition that J be finitely generated. This follows without too much difficulty from the proofs of these theorems. ⁴ We assign order 0 to infinite cyclic groups. such that for each i, $r_i \sum_{j=k+1}^{l} a_{ij}x_j = 0$. Clearly, for each i, $$(2) r_i y_i = r_i \sum_{i=1}^k a_{ij} x_i \neq 0.$$ Since we have k+1 equations in k indeterminates, there exist constants $t_1, t_2, t_3, \dots, t_{k+1}$, relatively prime, and such that for each j, $\sum_{i=1}^{k} t_i a_{ij} = 0$. Therefore, $$\sum_{i=1}^{k+1} t_i r_i y_i = 0.$$ At least one of the t_i is not divisible by p_1 . Therefore, at least one of the $t_i r_i$ is not divisible by $p_1^{\alpha_1}$, and is, therefore, not divisible by m. It follows that the y_i are linearly dependent mod m. Therefore, $r_m(V) = k$. The following are direct consequences of the above proof. COROLLARY 1. If $r_m(J) = k$ there exists a set of k linearly independent elements mod m each element of which has order m or 0. COROLLARY 2. The rank of J, $r_0(J)$, is the number of the V_i whose order is 0, and if $R_m(J)$ denotes the number of the V_i whose order is divisible by m, but is not 0, then $r_m(J) = r_0(J) + R_m(J)$. THEOREM 2. If J is a finitely generated Abelian group and U is a sub-group with division⁵ of J, then $r_m(J) = r_m(U) + r_m(J - U)$. PROOF. By Corollary 2 above, $r_m(U) = r_0(U) + R_m(U)$. Since U is a sub-group with division, each element of (J-U) has order 0, and $r_m(J-U) = r_0(J-U)$. Clearly, $R_m(U) = R_m(J)$. Therefore, since $r_m(U) + r_m(J-U) = r_0(U) + R_m(U) + r_m(J-U)$, $r_m(U) + r_m(J-U) = r_0(U) + r_0(J-U) + R_m(J) = r_0(J) + R_m(J) = r_m(J)$. The same authors⁶ attempt to prove that if p is a prime number and U is a sub-group of the group J, then $r_p(J) \leq r_p(U) + r_p(J-U)$. The proof is incorrect. I offer in its place a valid proof. THEOREM 3. If p is a prime and U is a sub-group of the group J, then $r_p(U)+r_p(J-U) \ge r_p(J)$. PROOF. There is a set of $r_p(U)$ elements of $U, x_1, x_2, \cdots, x_{r_p(U)}$ linearly independent mod p. $R_p(U)$ of these form a basis for the subgroup of U consisting of all elements in U of order p. There is a set ⁵ The sub-group U of J is said to be a sub-group with division of J provided $px \in U$, $p \neq 0$, implies that $x \in U$. ⁶ Alexandroff and Hopf, loc. cit., p. 573. y_1, y_2, \dots, y_k of elements of J such that (1) for each i, y_i is of order p, (2) $k = R_p(J) - R_p(U)$, and (3) $x_1, x_2, \dots, x_{r_p(U)}, y_1, y_2, \dots, y_k$ is a basis for the sub-group of J consisting of all elements of order p. Clearly, $U + y_1, U + y_2, \dots, U + y_k$ are independent mod p in J - U, and $R_p(J - U) \ge k$. Now, $$r_{p}(U) + r_{p}(J - U) = r_{0}(U) + R_{p}(U) + r_{0}(J - U) + r_{p}(J - U)$$ $$\geq r_{0}(J) + R_{p}(U) + k$$ $$= r_{0}(J) + R_{p}(J) = r_{p}(J).$$ Example 1 shows that the inequality can hold. The following example shows that Theorem 3 is not true for composite numbers. EXAMPLE 2. Let J be the group of integers mod 12, and U the sub-group generated by 2. Then, $r_4(J) = 1$, $r_4(U) = 0$, $r_4(J - U) = 0$. It can be proved by methods quite similar to those in this paper that the equality in Theorem 3 holds if and only if pU equals the common part of U and pJ, but this lies outside the purpose of this paper. University of Texas