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1. Introduction. In 1947, Irving Kaplansky [5]1 extended certain

results of Ancochea [l] on semi-automorphisms of division algebras

by redefining the concept of a ring semi-automorphism.

The definition which proved fruitful there is: A semi-automorphism

of a ring is an additive automorphism a—*a' satisfying (aba)' —a'b'a'.

It has been established that every semi-automorphism of a division

ring is an automorphism or an anti-automorphism, [S] and [4], and

this result has found application in various places; for example, in

[2]. In view of this application of ring semi-automorphisms it is not

inconceivable that a similar type of mapping for groups may prove

useful. Following the ring concept we define a semi-automorphism of

a group to be a 1-1 mapping of the group onto itself such that (aba)'

= a'b'a' and investigate the question: Under what conditions is a

group semi-automorphism an automorphism or an anti-auto-

morphism?

This article is an excerpt from a thesis prepared under the direc-

tion of Professor Kaplansky which answers this question for the

following classical cases: symmetric groups, alternating groups, di-

hedral groups, finitely generated abelian groups, and certain linear

groups over a 2-dimensional vector space.

For brevity we shall say that a group G is SA if every semi-auto-

morphism of G is an automorphism or an anti-automorphism. For
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1 Numbers in brackets refer to the bibliography at the end of the paper.
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groups which are the direct product of noncommutative groups it is

evident that there always exist semi-automorphisms which are auto-

morphisms on one factor and anti-automorphisms on the other factor,

hence the groups are not SA. However, the fact that indecompos-

ability does not insure the SA property is evidenced by the dihedral

groups which are not SA. One might conjecture that every simple

group is SA. Our investigation shows no exception to this con-

jecture among the simple groups considered but it further shows

that many groups which are not simple are SA. Aside from the com-

plete results for symmetric and alternating groups given here we

mention specifically only one further result; namely, the two-dimen-

sional special linear group over an arbitrary field is SA.

2. Definitions and general lemma. Since Lemma 2 of [5] shows

that if a semi-automorphism 5 of a group sends the identity e—>g,

then

(1) g is in the center,

(2) g2 = e, and

(3) the mapping 5 followed by x^>xg is a semi-automorphism;

the study of semi-automorphisms of groups can be reduced to those

in which e—>e. We therefore formally state the definition to include

this.

Definition 1. A semi-automorphism of a group G is a 1-1 mapping

of G onto G such that for the identity element e and arbitrary ele-

ments a and b of G

e' = e

and

(aba)' = a'b'a'.

Definition 2. An element x of a group G is special if x = aia2 • • ■ an

where ö< is in G and (aia2 ■ ■ ■ an)~1 = an • ■ • a2ai.

The following lemma is easily proved.

Lemma 1. Under a semi-automorphism of a group G

(1) nth powers map into nth powers,

(2) inverses map into inverses, and

(3) if every element of G is special, then conjugate classes map onto

conjugate classes.

Proof of (3). Let x and y denote elements of G and consider

(x~lyx)'. Since x = ai<i2 • • ■ an where (aia2 • • • an)~1=an • ■ ■ a2ai} we

have
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k = (an ■ • ■ aiyai ■ - ■ an)   = an ■ ■ ■ axy ax • • ■ aH.

Then añ ■ ■ • alai ■ ■ • añ =an' • • • (al)' ■ ■ ■ añ = (an ■ ■ ■ a\ ■ • ■

an)' = e' = e. Therefore, k = (al • • ■ a/^y'al • ■ ■ añ is a conjugate

of y', and conjugate classes map onto conjugate classes.

We shall frequently use the fact that any element which can be

expressed as the product of elements of order two is a special element.

Definition 3. A permutation is a 1-1 mapping of a set into itself.

Definition 4. For a given positive integer n, the finite symmetric

group Sn is the set of all permutations of n objects.

Definition 5. For arbitrary infinite cardinals ^ and N', the in-

finite symmetric group S(i$, &') is the set of all permutations of N

objects which move less than ^' objects.

Definition 6. For any cardinal i$, finite or infinite, the alternating

group A$ is the set of all finite even permutations of N objects.

In the following proofs a symmetric group will be one satisfying

Definitions 4 or 5, and an alternating group will be one satisfying

Definition 6.

3. The main theorem. Every semi-automorphism of a symmetric

group or of an alternating group is an automorphism or an anti-auto-

morphism.

Lemma 2. A semi-automorphism of a symmetric group maps conju-

gate classes onto conjugate classes.

Proof. Every cycle, finite or infinite, can be expressed as the

product of elements of order two as follows:

( • • • 642135 • • • ) = [(12)(34) • • • ][(1)(23)(45) • • • ].

(This notation indicates the analogous product for finite cycles.)

Since the cycles are disjoint, every element can be expressed as the

product of two elements of order two. Part (3) of Lemma 1 then

shows that conjugate classes map onto conjugate classes.

Lemma 3. A semi-automorphism of an alternating group maps

conjugate classes onto conjugate classes if the number of objects is greater

than four.

Proof. This follows immediately from Lemma 1, since the 3-cycles

in an alternating group generate the group and for n = 5 any 3-cycle

(ijk) = (if) (tm) ■ (ik) (tm).

Lemma 4. Under a semi-automorphism of S„ or An a 3-cycle can

map into a product of 3-cycles only when n = 6.
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Proof. The number of 3-cycles is «(« —1)(« —2)/3 and the num-

ber of products of k 3-cycles is «(« —l)(w —2) • • • (« — 3k + \)/3kk\.

These are equal only when k = 2 and « = 6 [8]. Since 3-cycles are

conjugate for all n in 5„ and for «^5 in An and conjugate classes

map onto conjugate classes, the lemma is proved.

Lemma 5. Let S and A denote symmetric and alternating groups, re-

spectively, which contain an infinite number of elements. Then under a

semi-automorphism of S or of A a single 3-cycle must map into a single

3-cycle.

Proof. Let B denote the set of single 3-cycles in 5 or in A. Then

the only possible types of products of the form aba with a, b ES or A

are as follows:

(123)(123)(123) = (1),

(132)(123)(132) = (132),

(124)(123)(124) = (132),

(142)(123)(142) = (12) (34),

(145)(123)(145) = (15234),

(456)(123)(456) = (123)(465).

We now let k be a fixed integer ^ 2 or let k be a fixed infinite num-

ber, and let Ak denote the set of all products of k disjoint 3-cycles.

If a single 3-cycle maps into a product of k 3-cycles, then B must

map onto Ak, since Ak forms a single conjugate class. The lemma will

be proved if there is an aba product with a, bEAk having an order

different from all orders in (1).

We use the same notation for k finite or infinite and let

a = (123) (546) (xyz)(rst)(uvw)

b = (I32)(567)(xyz)(rst)(uvw)

Then aba = (123)(47)(56) is of order six and the lemma is proved.

Lemma 6. The elements of order three and the elements of order two

of a symmetric group generate the group under the operation aba.

Proof. We shall show first that any finite cycle c of degree greater

than 3 can be expressed as aba where a is a product of disjoint 3-cycles

and & is a product of disjoint transpositions and the only numbers that

occur in a and b are those in c.

We now show how to produce an «-cycle for each «.

(1) Let « = 3k. For « ^ 2 the aba product for
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a = (123)(456)(789) ■ ■ ■ (3k - 2, 3k - 1, 3k),

b = (34)(67) • • • (3k - 3)(3k - 2)

is given by the formula

(13258, 11, • • • , 3k - 1, 3k - 2, 3k, ■ ■ ■ , 10, 12, 7, 9, 4, 6);

that is, the first four numbers are 1325, these are followed by the

middle number of each cycle in regular order, and these are followed

by the first and third numbers in each cycle where the cycles are con-

sidered in reverse order and the first cycle is omitted.

This formula holds for k = 2 since

(123)(456)(34)(123)(456) = (132546).

We assume then that it holds for some k and consider the aba product

for

a = (123)(456) ■ ■ ■ (3k - 2, 3k - 1, 3k)(3k + 1, 3k + 2, 3k + 3),

b = (34)(67) ■ ■ ■ (3k - 3, 3k - 2)(3)fe, 3k + 1).

This gives (13258, • • • , 3k-\, 3k + 2, 3k+\, 3k+3, 3k-2, 3k, ■ ■ ■ ,
10, 12, 7946); hence the formula holds for k+1. Similar proofs can

be given for n = 3k + \ and n = 3k + 2.

We next show that an infinite cycle D can be obtained as an aba

product of transpositions and 3-cycles which contain only the num-

bers of D.

D =(■•■, 12, 10, 8, 6, 4, 2, 1, 3, 5, 7, 9, 11, • • • ) = aba,

where

a = (153)(472)(896)(12, 11, 10)(16, 13, 14)(20, 15, 18)(24, 17, 22) • • • ,

b = (34)(28)(6, 12)(10, 16)(14, 20)(18, 24) ■ • • .

Now let E be any permutation not consisting entirely of 3-cycles

and containing at least one «-cycle for some n = 3. Since its cycles are

disjoint, there will be no overlapping of numbers if a and b are chosen

as follows:

Let a consist of (i) the inverses of all 3-cycles appearing in E and

(ii) all 3-cycles needed to express all other cycles as described in the

first part of this proof.

Let b consist of (i) all transpositions appearing in E and (ii) all

transpositions needed to express all other cycles as in the first part of

this proof. Then E = aba.
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Lemma 7. The elements of order three and the elements of order two

of an alternating group generate the group under the operation aba.

Proof. We need to observe merely that the formulas for finite

cycles c of Lemma 6 involve even products of transpositions when c

is an even «-cycle and odd products of transpositions when c is an

odd «-cycle. Hence the element of order two needed for any even

permutation is an even permutation.

Proof of the Main Theorem. We shall first consider all semi-

automorphisms which send a single 3-cycle into a single 3-cycle. This

will include all semi-automorphisms except those of S& and As which

send a 3-cycle into the product of two 3-cycles. The theorem will be

proved for this case if the mapping can be reduced to the identity-

mapping by applying normalizations which are automorphisms or

anti-automorphisms. We proceed to this end.

If (123)' = (ijk) under a semi-automorphism T(X) =X', we normal-

ize to the identity by applying the inner automorphism which sends

(ijk) into (123). Since inverses map into inverses, (132)'= (132).

Then (124) must have exactly two numbers in common with

(123)'= (123) and these numbers must occur in the same order as in

(123), for if (124)'= (1/2), (lim), or (tmn), a contradiction arises as

follows:

[(123)(124)(123)]' = (142)' = (123)(1¿2)(123) = (12)(3/),

or = (123)(l¿m)(123) = (13tm2),

or     = (I23)(tmn)(l23) = (132)0*«).

Therefore, (124)'= (120, (23r), or (ls3).

In each case there exists an automorphism of the form x—>y~lxy

(where y may be in the corresponding symmetric group if the alternat-

ing group is being considered) which leaves (123) fixed and sends

(124)' into (124). This normalizes the mapping to the identity on

(123) and (124).
Since (125)' must have exactly two numbers in common with each

of the elements (123) and (124) and these must be arranged in the

same order as in (123) and in (124) we know that

(125)' = (\2t).

If ¿5^5 the inner automorphism x—->(5/)x(5/) normalizes the mapping

to the identity on (123), (124), and (125). Similarly, we can obtain

(126)'= (126).
Let B denote the set of elements of the form (12r). The preceding
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argument shows that every element in B has an image in B. We now

show that if an element z is not in B, it cannot have an image in B.

We consider the following cases:

(a) z contains both 1 and 2 and is therefore of the form (\j2).

(b) z contains only one of these numbers and is of the form (ijk).

(c) z contains neither of these numbers and is of the form (ijk).

In all cases if z' = (12/), (z-1)' = (1/2), and a contradiction arises as

follows :

Let (12s) be such that s = 3, 4, 5, or 6 and S9*i,j, nor k. Then

[(12s)z(12s)]' = [(12i)(lj2)(12S)]' = [(12)0*)]'

= (12s)(120(12j) = (1/2),

or     = [(12s)(lj£)(12j)]' = (\sjk2)' = (1/2),

or     = [(Us)(ijk)(\2s)]' = [(ls2)(ijk)]' = (1/2).

This shows that the mapping on B is 1-1 onto. (12ri)—*(l2si),

(12r2)^(12s2), • • • , (12ra)->(12i„),

Let h be the permutation ra—»s«. Then x—fh^xh normalizes the

mapping to the identity on B and on the inverses of B.

We now consider (143)'. Since (143) has two letters in common

with each of the elements (142) and (123), it must contain two letters

from each in the same order as they occur in (142) and in (123). This

is possible if and only if (143)'= (143) or (234).
If (143)' = (234), the anti-automorphism x—>(\2)x~1(\2) normalizes

the mapping to the identity on B and on the element (143).

In order to show that all 3-cycles map identically it suffices to

show that each 3-cycle or its inverse can be produced from the ele-

ments in B and the element (134) under the aba operation.

Since (12r)(ls2)(12r) = (12)(rs) and (12)(34)(134)(12)(34) = (243),

this is true for w = 4.

If »£5, (12)(4t)(134)(12)(4î') = (23i) for tV 1,4, but we have (231)
and (234) ; therefore, we have this product for all i.

Then (I2)(3j)(23i)(l2)(3j) = (lji) for i,J9*2, 3. In order to obtain

(\ij) for î = 3 we use

(12)(4i)(234)(12)(4;) = (13;).

Then (lji)(U2)(lji) = (li)(2j) and

(li)(2j)(12k)(li)(2j) = {ijk), i, j 9* 1, 2.

Since we have all (Iji), we need only produce all (2jk). This we obtain

from

(U)(ik)(\ji)(\2)(ik) = (2jk).
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Therefore, all single 3-cycles map identically. We now show that all

elements map identically.

Let x be a product of disjoint transpositions and let y = x'?¿x. Then

some transposition (ij) is contained in x or in y but not in both.

Let z = (ijk), then (xzx)'= x'z'x'= yzy. Since x and y are of order two,

xzx and yzy are conjugates of z. One of these products will be of the

form (jir) and the other will be different, since it will fail to contain

both i andj; or, if it contains both, will send i into j. Therefore x' =x

for all transpositions.

Let x be a product of a disjoint 3-cycles, then

x = (123) (456) (789) • • ■ (ijk)

and x'=y is also a product of 3-cycles. Let z= (12) (45) (78) • • •

(ij) • ■ • . Then zxz = z and since (xzx)' =x'z'x' =yzy, y must be of

such form that yzy = z. This will happen if and only if for every

transposition (if) in z one of the following is true:

(a) i and j do not appear in y.

(b) y contains a 3-cycle containing both i and j.

If now we repeat the argument with z = (13) (46) (79) • • • (ik) ; • •,

we conclude that if y contains a number in a 3-cycle (ijk) of x it con-

tains (ijk) or (jik).

If y does not contain the letters of a given 3-cycle, say the cycle

(123), then a contradiction arises as follows:

Let 2 = (45) (78) • • • (ij) ■ •• . Then xzx is of order 6 while yz;y = z.

Therefore, for a given 3-cycle in x, y contains this 3-cycle of its in-

verse, and conversely.

It suffices to consider the cases

(a) x = (123) (456)

y = (132X465)

(b) x = (123)(456)

y = (132) (456)

For each case let 2 = (234), then xzx is of order 15 or 5 and yzy is of

order 12 or 4. This is a contradiction. Therefore x' = x.

Since for the symmetric and the alternating groups the elements of

orders two and three generate the group under aba, the mapping is

the identity on all elements, and the theorem is proved for the case

where a single 3-cycle maps into a single 3-cycle.

Finally, let F be a semi-automorphism of 56 (or of At) which sends

a 3-cycle into a product of two 3-cycles. There exists [3] a known
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automorphism W of So (or of Ao) which sends a product of two 3-

cycles into a single 3-cycle.

Then U= WV is a semi-automorphism which sends a 3-cycle into

a 3-cycle, hence, by the first part of this proof, is an automorphism

or an anti-automorphism. Therefore V= W~1U is an automorphism or

an anti-automorphism.
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