
A THEOREM ON QUADRATIC RESIDUES
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We give a short proof of the following result.

Theorem. For every prime p = 3 (mod 4),

(p-i)/«/Â\

that is, the number of quadratic residues in the range 0 to ip — i)/2

exceeds the number of nonresidues in this range.

This theorem seems to have been first conjectured by Jacobi and

proved by Dirichlet [l]1 in connection with the theory of binary

quadratic forms. Proofs are also given in the books of Bachmann [2]

and Landau [3]. More recent proofs are due to Kai-Lai Chung [4]

and A. L. Whiteman [S]. All known proofs, including the one given

here, are analytic. While a really elementary proof would be of great

interest, the following proof may merit consideration because of its

brevity.

Our starting point is the following Gaussian summation, proved in

[3]-

(1) 2Z{—)e2"r/p= iip)112.

r=l \ p }

By taking imaginary parts, making the substitution r = n-h, and

multiplying through by

—(-)

in (1) we obtain

_1 (ü\ = J_ y (±\sin i^nh/p) _

n\p)~ p^hKp) n

Summing (2) over odd n we get

- 1        /2m - 1\ = Jä/*\ f sin(2ir(2ii»-l)A/^)

¿i(2f»-l)\     p     )     p^hKp/nhi 2m -1

Now by a well known Fourier expansion
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(4)
sin (2m - 1)0       í   tt/4   for   0 < 0 < tt,

2m - 1 l-ir/4   for   ir < 6 < 2*.

Using (4) in the right-hand side of (3) we obtain

A    _1_/2m - 1\

»_i 2m — 1\     />     /
(5j

,_jr_r^/n_ g /ni
4p1/2 L   ä=i    \/>/    h=(P+i)/2\p.

Now since — 1 is a nonresidue of p,

(^)~(t)

so that the bracket in (5) reduces to 2£. Hence

ir£

(6)
A        1       12m - 1\ =

¿1 (2m - 1) \      ¿      / 2i 1/2

Now £ is the difference of two integers whose sum is odd. Hence

Et^O, and to prove £>0 it suffices to show £ = 0. This we shall do

by showing that the left-hand side of (7) is not negative.

Consider the following identity, valid for s>l:

(7) hi (2m - 1)A      P      ) "    ,\ q\p))
where q runs over all odd primes. The series on the left is uniformly

convergent for s = 1. Hence its sum is continuous at 5 = 1. The infinite

product is clearly positive for s>l. Hence the proof is complete.

It may be noted that the advantage of this proof is due mainly to

the use of the Fourier series 2Zm=i (sin (2wz—l)0/(2m —1)) instead of

^2m-i (sin vnß/m). For class-number theory, the latter is the natural

one, while for the purpose of just proving this theorem alone, the

former achieves the desired goal more quickly.
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