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(13) cq(Aqii - Aqii) = 0

is a necessary condition for the permanence of vector-lines. It is also

sufficient, as we see from consideration of the order of the equations

involved and the fact that if (13) holds, then njy = 0 implies dQ.-y/d/
= 0.

Hence we have this result: A necessary and sufficient condition for

the permanence of the vector-lines of Ci is (13), or equivalently, that the

tensor cqAqa, that is,

Cj(ci,kvk + dci/dt) + dVj.kCk,

shall be symmetric.
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Let T denote a regular matrix method of summability in the

complex domain, that is to say, a transformation of the form

In = ]C ankSk (n = 1, 2, 3, • • • ),
*-l

having the property that the convergence of {sk} to s always implies

the existence of /„ for each n and the convergence of \tn\ to s. It is

well known that the following conditions of Silverman-Toeplitz are

necessary and sufficient in order that T be regular: a„k = o(l) («—>oc ;

k = l, 2, 3, ■ • • ); ^2k=iank = l+o(l) (n—► »); and

oo

(1) Z I «»*|   =0(1) (»-*«).
*=1

The following theorem was established recently by Henstock [2].1

Theorem (Henstock). Let y={zk) be a given bounded sequence of

complex numbers.  Then there exist denumerably many sequences of
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1 Numbers in brackets refer to the references at the end of the paper.
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zeros and ones, depending only on y, such that the summability of each

of these by any regular matrix method T implies the T-summability of y.

The proof given by Henstock follows classical lines and is moder-

ately complicated. The purpose of this note is to give a shorter and

simpler proof based on the theory of linear operations [l]. To this

end we consider the sequences X(t) = {«*} of zeros and ones, with

infinitely many ones, where t= .«io^s • • ■ (radix 2). It is known [3]

that the set of all sequences X(/) constitutes a fundamental set in the

Banach space (b) of all bounded complex sequences x={stj with

||x|| =sup* | sk\. In other words, for p — 1, 2, 3, • ■ • and an arbitrarily

given yEib) there exist a finite number of complex constants

A*, A\, ■ ■ • , Al^ and corresponding sequences Xit\), Xitv), ■ ■ ■ ,

X(tip) such that \\y-[A\Xit\)+AlXitl)+ ■ ■ ■ +AlpXitlp)}\\
< i/p. If yp denotes the sequence in brackets we therefore have

yv—yy in the norm of (ô). Let J1 be a regular matrix method and

write/„(x)= 2~2t-i ankSk (« = 1, 2, 3, • • • ) where x= {sk}E(b). For

each n,fnix) is a linear operation on (b) to the space of complex num-

bers, and ||/„|| = 2~Lk~\ \ank\ [3]. If each of the denumerably many

sequences Xitv) (i=l, 2, • ■ • , mp; p = l, 2, 3, ■ ■ ■ ) is summable-T,

then the sequence yp is summable-T, that is, the sequence {fniyP)}

is convergent for each p. Since the sequence of norms {||/n||} is

bounded by (1) and yp—->y, it follows (as in [l, p. 79, proof of Theorem

3]) that the sequence {/n(y)} is convergent. This completes the proof.
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