NOTE ON THE TRANSCENDENCE OF CERTAIN SERIES

WILLIAM J. LEVEQUE

1. Introduction. Let k and m be integers satisfying either of the sets of conditions, k=0 or 1, $m \ge 0$, or $k \ne 0$, 1, and $m \ge -1$. Then the series

$$\sum_{n=0}^{\infty} \frac{(n+k)^{n+m} x^n}{n!}$$

defines a function f_{km} in the range $|x| < e^{-1}$. It is the object of this note to show that $f_{km}(x)$ is transcendental for every algebraic $x \neq 0$ in this interval. The proof involves no new transcendence investigations, but depends directly on Lindemann's theorem that e^x is transcendental for algebraic $x \neq 0$. The connection between the exponential function and f_{km} is established by using the Lagrange expansion in powers of x

(1)
$$G(z) = G(0) + \sum_{n=1}^{\infty} \frac{x^n}{n!} \left[D_t^{n-1} G'(t) \phi^n(t) \right]_{t=0}$$

of any function G (regular in a neighborhood of z=0) of the quantity z defined by the equation $x=z/\phi(z)$, where $\phi(z)$ is regular in a neighborhood of z=0 and $\phi(0)\neq 0$ (see Pólya-Szegö, Analysis, vol. 1, p. 125).

The symbol 0° is to be interpreted as 1, throughout. For brevity put $f_{kk} = f_k$.

2. The case k=0.

LEMMA 1. The function y defined by the equation $y^y = e^{-x}$, and such that $\lim_{x\to 0} y(x) = y(0) = 1$, is identical with f_{-1} in the range $|x| < e^{-1}$.

For it follows from $y^y = e^{-x}$ that $x = z/e^z$, where $z = -\log y$. Taking $\phi(z) = e^z$, $G(z) = e^{-z} = y$ in (1) gives

$$y(x) = 1 + \sum_{n=1}^{\infty} \frac{x^n}{n!} \left[D_t^{n-1} (-e^{(n-1)t}) \right]_{t=0}$$
$$= 1 - \sum_{n=1}^{\infty} \frac{(n-1)^{n-1} x^n}{n!}$$
$$= -f_{-1}(x).$$

Received by the editors May 24, 1950.

Lemma 2. $f_0(x)$ is transcendental for each algebraic x with $0 < |x| < e^{-1}$.

By Lemma 1, $y = -f_{-1}$ is a solution of the equation $\log y = -x/y$, so that not both of x, $f_{-1}(x)$ can be algebraic unless x = 0. But $y \log y = -x$ implies that y' = y/(x-y), so that also not both of $y'(x) = -f_0(x)$ and $x \neq 0$ can be algebraic.

LEMMA 3. f_{0m} is a polynomial in f_0 with rational integral coefficients.

Let $y^y = e^{-x}$, and put y' = z = y/(x-y). Then it can be verified that $z' = z^2(1+z)/x$, or

$$f_0'(x) = -\frac{f_0^2(x)(1-f_0(x))}{x},$$

so that $xD_xf_0 = P_1(f_0)$, where P_1 is a polynomial with integral coefficients. It follows from this that $(xD_x)^mf_0 = P_m(f_0)$, where P_m is again a polynomial with integral coefficients. Finally, it is clear from the definition of f_{km} that $(xD_x)^mf_0 = f_{0m}$.

THEOREM 1. If $m \ge 0$, $f_{0m}(x)$ is transcendental for every algebraic x for which $0 < |x| < e^{-1}$.

This follows immediately from Lemmas 2 and 3.

It might mentioned that f_0 is a solution of the equation $(1-1/y)e^{-(1-1/y)} = x$.

3. The case $k \neq 0$. Putting y = z, $G(y) = e^{ky}$, $\phi(y) = e^y$ in (1) gives the following statement.

LEMMA 4. If y is that solution of the equation $ye^{-y} = x$ which is continuous at x = 0, then for $k \neq 0$, $e^{ky} = kf_{k,-1}(x)$ for $|x| < e^{-1}$.

LEMMA 5. For $k \neq 1$, $f_{k0}(x)$ is transcendental for each algebraic x for which $0 < |x| < e^{-1}$.

Since $f'_{k-1,-1} = f_{k0}$, it follows from Lemma 4 that

$$e^{(k-1)y}y'=f_{k0},$$

and since $y' = e^{y}/(1-y)$,

$$f_{k0}(x) = \frac{e^{ky}}{1-y} = \frac{(y/x)^k}{1-y}$$
.

By its definition y(x) is transcendental for algebraic $x \neq 0$, so that also $f_{k0}(x)$ must be transcendental.

LEMMA 6. If $m \ge 0$, $k \ne 0$, 1, then

$$f_{km}(x) = \frac{P_{km}(y)}{x^k},$$

where P_{km} is a nonconstant rational function with integral coefficients and y is the y of Lemma 4.

From the definition of f_{km} , it is seen that

$$(xD_x)^m(x^kf_{k0}) = x^kf_{km}.$$

On the other hand, using the conventional operator notation, we have

$$D_x = D_x y \cdot D_y = \frac{e^y}{1 - y} D_y,$$

so that

$$xD_x = \frac{y}{1-y}D_y.$$

Hence

$$f_{km} = \frac{1}{x^k} \left(\frac{y}{1-y} D_y \right)^m \frac{y^k}{1-y};$$

the expression on the right contains a factor y^k in the numerator, while the denominator is of the form $x^k(1-y)^s$, and the proof is complete.

LEMMA 7. For every m,

$$xf_{1m}(x) = f_{0m}(x) - \begin{cases} 0 & \text{if } m \neq 0, \\ 1 & \text{if } m = 0. \end{cases}$$

and so for $m \ge 0$, by Theorem 1, $f_{1m}(x)$ is transcendental for each algebraic x, $0 < |x| < e^{-1}$.

This follows immediately from the definition of f_{km} .

THEOREM 2. If $k \neq 0$, 1 and $m \geq -1$, or if k = 1 and $m \geq 0$, the quantity $f_{km}(x)$ is transcendental for each algebraic x with $0 < |x| < e^{-1}$.

University of Michigan