
NOTE ON THE TRANSCENDENCE OF CERTAIN SERIES

WILLIAM J. LEVEQUE

1. Introduction. Let k and m be integers satisfying either of the

sets of conditions, & = 0 or 1, ra^O, or&j^O, 1, and m^ — 1. Then the

series

*   (w + k)n+mxn

„=o til

defines a function fkm in the range |x| <e_1. It is the object of this

note to show that fkm(x) is transcendental for every algebraic x^O

in this interval. The proof involves no new transcendence investiga-

tions, but depends directly on Lindemann's theorem that ex is trans-

cendental for algebraic x 5^ 0. The connection between the exponential

function and fkm is established by using the Lagrange expansion in

powers of x

(i) g(z) = g(o) + X - [zCVwAoL-o
n-i n\

of any function G (regular in a neighborhood of 2 = 0) of the quantity

z defined by the equation x = z/<b(z), where <p(z) is regular in a neigh-

borhood of z = 0 and 0(0)^0 (see Polya-Szegö, Analysis, vol. 1, p.

125).

The symbol 0° is to be interpreted as 1, throughout. For brevity

put fkk =fk-

2. The case k = 0.

Lemma 1. The function y defined by the equation yy = e~x, and such

that liniz-.o y(x)=y(0) = l, is identical with/_i in the range \x\ <e_1.

For it follows from y" = e~x that x = z/el, where z = —log y. Taking

4>(z) =ez, G(z) =e~z = y in (1) gives

y(x) = i + X - [d7\- e^)l)U
=i n

"    (n - l)"-1*"

„=i n\

= -f-i(*).
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Lemma 2. /o(x) is transcendental for each algebraic x with 0<|x|

<e-\

By Lemma 1, y = —/-i is a solution of the equation log y = — x/y, so

that not both of x,/_i(x) can be algebraic unless x = 0. But y logy

= —x implies that y'' = y/(x—y), so that also not both of y'(x)

= —faix) and X9*0 can be algebraic.

Lemma 3. /o,„ ts a polynomial in /o w¿¿A rational integral coefficients.

Lety = e_I, and put y' = z = y/(x— y). Then it can be verified that

z' = s2(l+z)/x, or

yî(*)(l-/o(*))
fo(x) =->

x

so that xDxfo = Piifo), where Pi is a polynomial with integral coeffi-

cients. It follows from this that ixDx)mf0 = Pm(fo), where Pm is again

a polynomial with integral coefficients. Finally, it is clear from the

definition offkm that ixDx)mfo=fom-

Theorem 1. If m^O,fomix) is transcendental for every algebraic x for

which 0< | x| <e~1.

This follows immediately from Lemmas 2 and 3.

It   might   mentioned   that /o   is   a   solution   of   the   equation

(i-l/y)e-^1-1'^=x.

3. The case k9*0. Putting y — z, Giy)=ekv, <f>iy)=ey in (1) gives

the following statement.

Lemma 4. If y is that solution of the equation ye~y = x which is con-

tinuous at x = 0, then for k9*0, eky = kfk,-i(x) for |x| <e_1.

Lemma 5. For k9*\, /*o(x) is transcendental for each algebraic x for

which 0<|x| <e_1.

Since /¿_i,_i =/jfco, it follows from Lemma 4 that

and since y' = e"/(1 — y)>

e"y        iy/x)"
fho(x) =-=-

1 — y       \ — y

By its definition y(x) is transcendental for algebraic x^O, so that

also/i;o(x) must be transcendental.
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Lemma 6. Ifm^Q, k^O, 1, then

,   . ,     Pkm(y)
fkm(x)   =  -— ,

x"

where Pkm is a nonconstant rational function with integral coefficients

and y is the y of Lemma 4.

From the definition oí fkm, it is seen that

(xDx)m(xkfko) = xkfkm.

On the other hand, using the conventional operator notation, we

have

e"
Dx = Dxy-Dy =-Dy,

1- y

so that

Hence

y
XDX    =    - Dy.

f -1( y nV y" .
Jkm-—.\- L'y)      -

x* \1 — y     /    1 — y

the expression on the right contains a factor yk in the numerator,

while the denominator is of the form x*(l—y)", and the proof is

complete.

Lemma 7. For every m,

(0   if   m 7± 0,
Xflm(x)   = fom(x)   ~    <

U    if   m = 0,

and so for m^O, by Theorem l,fim(x) is transcendental for each alge-

braic x, 0 < | x| <e_1.

This follows immediately from the definition of fkm.

Theorem 2. // k^O, 1 and m= —1, or if k = l and m^O, the

quantity fkm(x) is transcendental for each algebraic x with 0< |x| <e~l.
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