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1. Introduction. It is the purpose of the present note to investigate

the order properties of self-adjoint operators individually and with

respect to containing operator algebras. We are particularly con-

cerned with the vestiges of lattice structure which may remain in

operator algebras when the commutativity assumption is dropped.

In brief the situation is as follows.2 A uniformly closed self-

adjoint operator algebra (C*-algebra) SI' which is commutative and

contains the identity operator 7 on the Hubert space 3C is isomorphic

in an algebraic and norm preserving fashion to a C'iX)—see for

example Stone [3].3 CiX) (or for that matter CiY) when 7 is not

present in 31') is a lattice, so that SI is a lattice in the ordering induced

by the ordering on the (real) linear space © of all bounded self-ad-

joint operators on 3C.4 S. Sherman5 [2] has recently shown that if

31' is a C*-algebra with 31 a lattice in the given order, then Si' is com-

mutative. Our results indicate that the more noncommutative Si'

becomes the less lattice structure 31 retains. In fact our principal

result states: © is such that for A, B in @, a greatest lower bound

for A and B exists with respect to © if and only if one of A or B is

greater than or equal to the other iA and B are comparable). A

moment's thought shows that this is as strongly nonlattice as a

partially ordered vector space can be. For this reason, we call such a

system an anti-lattice. We shall also show that two projections in a

!F*-algebra (weakly closed C*-algebra) have a greatest lower bound
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with respect to the algebra only if they commute (the converse is

not true). We note later that if SI' is a C*-algebra such that 31 is an

anti-lattice, then SI' is in a certain sense central simple.

2. Commuting projections.

Theorem 1. Two projections commute if and only if they have a

greatest lower bound with respect to some containing real linear space

of self-adjoint operators which contains in addition the projection lattice

join and intersection of the two given projections.

Lemma 2. If E and F are projections on the manifolds M and N

respectively, then the projection P on the manifold MC\N (that is, the

projection lattice intersection of E and F) is a greatest lower bound of E

and F with respect to all positive self-adjoint operators.

Proof. Clearly P = £, F; if A ^0 and A g£, F, then for x in Mx

(the orthogonal complement of M) 0 = (Ex, x) ^ (Ax, x) S;0 and thus

0 = (Ax, x) = (A1'2x,A1l2x), so that ^1/2x = 0 and Ax=A1i2A1'2x = 0.

Since A annihilates Mx and is self-adjoint, A leaves M invariant and

thus A5CEM. By symmetry A5CEN so that AKEMC\N. For arbi-
trary z in 3C write z = x+y with x in Mi~\N and y in (MC\N)L, then

(Pz, z) = (x, x) = (Ex, x) ^ (Ax, x) = (Az, z).

Lemma 3. // a and b are elements of a partially ordered vector space

V which have a positive greatest lower bound c in V, then a — c^dfor all

positive d such that a^b+d.

Proof. Clearly a — d^a, and from the hypothesis a—d^b thus

a — d^c or a — c^d.

Proof of Theorem 1. Let E' and F' be the given projections, 8

the real linear space, G' the greatest lower bound of E' and F' with

respect to 8, G and P the projection lattice intersection and join of

E' and F' respectively (all these operators in 8 by hypothesis). Set E

equal to E' — G' and F equal to F' — G'. E and F have 0 as their great-

est lower bound with respect to 8. In fact if T^E, F, then T+G'

¿JE', F' so that, with Tin 8, T+G'úG' or T£0. E' and F' are both

positive so that G' is positive, thus, by Lemma 2, G'^G so that

G = G' and E and F are projections. Since E and F have 0 as a great-

est lower bound, we have, by Lemma 3, E^B for each positive

operator Ti in 8 such that E^F+B. Choosing the projection P — F

for B, we see that E^F+P-F = P so that E^P-F and EF = 0.

Thus E' and F' commute.

If E', F' commute, clearly the C*-algebra generated by E', F',

1 is commutative and hence a lattice.
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Corollary 4. If two projections in a W*-algebra 31' have a greatest

lower bound with respect to SI then they commute.

As a corollary of this result we get the following special case of

Sherman's theorem [2].

Corollary 5. A W*-algebra 31' such that 31 is a lattice in the operator

order is commutative.

Proof. If 31 is a lattice, each pair of projections in Si' commute by

Corollary 4. Thus 31' is commutative, since finite linear combina-

tions of projections lie dense in SI' (uniformly).

3. Anti-lattices.

Theorem 6. © is an anti-lattice.

Lemma 7. Two projections have a greatest lower bound with respect

to © if and only if they are comparable.

Proof. Suppose E' and F' are projections with the greatest lower

bound G with respect to @. By Lemma 2, G is the projection lattice

intersection of E' and F'. As before we set E equal to E' — G and F

equal to F' — G and observe that E and F have greatest lower bound 0

with respect to ©. Thus, as in the proof of Theorem 1, EF = 0. If

neither E nor F is 0, there are nonzero vectors x and y such that

Ex — x, Fy = y; so that £y = 0and Fx = 0. Let A7be the 2-dimensional

space generated by x and y and P the projection on it. Note that E

and F leave M invariant. E and F restricted to M have the matrix

forms
i

g:hq
respectively relative to the basis x, y. The operator A on M whose

matrix form is

/-l 2172\

\21/2 -1/

relative to x, y is less than both E and F on M but not negative (the

conditions for

CD
to be positive are a, c^O and ac}zb2). Thus the operator AP on 3C
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is not negative. We claim AP^E, F. In fact let z be an arbitrary

vector in JC with x' its component in M and y' its component in

M±; then (APz, z) = (Ax', x')^(Ex', x')^(Ez, z) = (Ex', x')

+ (Ey', y'), since E leaves M and consequently ML invariant. The

same inequality holds for F. This contradicts the fact that E and F

have 0 as a greatest lower bound with respect to ©. Thus one of E

or F is zero so that E' and F' are comparable.

Proof of Theorem 6. Suppose A' and B' have the greatest lower

bound C with respect to @. Let A' — C be A and 73' — C be B: as

before, A and B have the greatest lower bound 0 with respect to ©.

We complete the proof by showing that one of A or B is 0. Suppose

A is nonzero. The W*-a\gehra 31' generated by A and I is represent-

aba as the set of all complex-valued continuous functions on a

compact-Hausdorff space X such that for g a real continuous func-

tion on X, the closure of the set [x:x in X, g(x) >S] is a closed and

open set. We denote by "A " again the representing function for A. A

is a positive nonzero real function so that, for some small positive b,

the set of points where A is greater than 5 is nonvoid. By the prop-

erties of X the closure of this set is both closed and open, so that its

characteristic function E is continuous. Clearly A ^ bE. Denoting

by "E" again the projection in 31' corresponding to the function E,

we have A ^ 5E in 31'. E and B have the greatest lower bound 0

with respect to ©. In fact if T^B and T^E, then bT^bE^A and

ÓT=: 573^73; thus 57^0 and TgO. By what we have proved, if B

were nonzero, we could find a nonzero projection F such that E and

F have 0 as a greatest lower bound with respect to ©. But this is

impossible for two nonzero projections, by Lemma 7. Hence 73 is 0

and the proof is complete.

Corollary 8. If A and B are self-adjoint operators in a W*-algebra

with greatest lower bound 0, then AB=0. If A and B have a greatest

lower bound C which commutes with them, then A and B commute.

Proof. The last assertion follows from the first, for A — C and B — C

have the greatest lower bound 0 so that 0 = (A — C) (73 — C)

= (B-C)(A-C)andAB = CB+AC-C2 = BC+CA-C2 = BA.lnthe
case A and 73 have the greatest lower bound 0, from the proof of

Theorem 6, we see that each pair of projections E and F such that

A — S£, B^yF, ô, 7>0 have greatest lower bound 0 with respect to

the PF*-algebra. Thus, by Corollary 4, E and F commute so that

EF=0. But A is a uniform limit of finite linear combinations of such

projections E (as is 73 with F). Therefore .473 = 0.

The following theorem establishes more fully the relation between
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the anti-lattice character and the noncommutativity of an operator

algebra.

Theorem 9. If the C*-algebra 31' is such that 31 is an anti-lattice,

then the center S of 31' is either (0) or the complexes.

Lemma 10. Each pair of commuting self-adjoint operators A and B

have a greatest lower bound iand least upper bound) with respect to all

self-adjoint operators which commute with them.

Proof. By considering the G*-algebra containing A, B, and 7

and its CiX) representation, one finds that C=i\A— B\ +A+B)/2

is a least upper bound for A and B with respect to this algebra, where

\D\2 = D2 and 7)^0. If now T^A,Band T commutes with A and B,

we have T^ C, for the C*-algebra containing T, A, B, and 7 contains

|.4— B\. Since the square root (positive) of a positive function is

unique, the absolute value of A —B is the same in both algebras, so

that C is the least upper bound with respect to the last algebra con-

structed and we have the desired conclusion.

Proof of Theorem 9. We suppose (5 is not (0). Being a commuta-

tive C*-algebra, E is representable as C'(F). By Lemma 10, each

pair of self-adjoint operators in 6 has a greatest lower bound in Si

with respect to SI. Since SI is an anti-lattice, this last remark shows

that the self-adjoint operators of S are simply ordered. Thus the real

functions in C'(F) are simply ordered. This can occur only if F con-

sists of a single point, and, thus, 6 is the complexes.

Corollary 11. A W*-algebra containing the identity operator which

is an anti-lattice is a factor isee [l]).

A mild modification of the proof given for Theorem 6 enables us

to complete the identification of lattice and commutativity proper-

ties. At least in the separable case, the results of Murray-von Neu-

mann [l] show us that a factor 9JÎ of Type I is algebraically iso-

morphic (and hence order isomorphic) to the set of all bounded oper-

ators on some (not necessarily infinite-dimensional) Hubert space, so

that such factors are anti-lattices. We shall now prove this result

for arbitrary factors. A brief examination of [l] shows the com-

parability result we need [l, Lemma 6.2.2] to be valid for factors in

the nonseparable case, so that our results are valid for general

Hubert space. In fact the comparability result needed involves only

orthogonal projections and can be easily obtained in algebraic rather

than spatial context.

Theorem 12. A factor 9JÎ is an anti-lattice.
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Proof. The proof of Theorem 6 may be repeated with © replaced

throughout by 9JÎ with the exception of Lemma 7. To make the neces-

sary replacement here, we are confronted with nonzero orthogonal

projections E and F having 0 as alleged greatest lower bound with

respect to 9JÎ: our task is to imitate the operator A of Lemma 7 in

the factor 3JÎ. We can assume E and F are equivalent (in the sense

of [l]); for either of E and F can be replaced by smaller nonzero

projections in 9JÎ without changing the situation, and the comparabil-

ity result quoted above completes the desired reduction.

Let U be the partially isometric operator of ÜJ? establishing the

equivalence between E and F ( U carries the range M of E unitarily

onto the range N oî F and annihilates the null space of E). Let A be

-E-F+21'2(U+U*). We assert E-A =2E+F-21'2(U+ U*) =0

(and symmetrically F—A ^0). In fact, for arbitrary w in 3C we write

w = x+y+z with x in M, y in N, and z in 3CO(M®N). Then

((E-A)w,   w)=2(x,   x) + (y,   y)-2"2((Ux,   y) + (U*y,   x))=2||x||2

+ ;y||2_2(2i/2)^(i/x, y). But %{Ux, y)^\(Ux, y)\ g|

, so that ((E-A)w, w)^2\\x\\2-2(21i2)\\x\\\\y\\+\\y

TJx||||y||=||x||

2. Now 2 x 2

-2(2i/2)||x|| ||y|i+||y||2 = 0 since

/    2      -2l"\

V-21'2      1    /

is positive definite (as noted in Lemma 7), and thus E—A 5:0 as as-

serted. We also have 0>4 ^0, for with x ¿¿0 in M, Ux is in Nso that

L4(x+c7x), x+c7x) = -(x, x) + 21'2(Ux, Ux) + 2l'2(x, x)-(Ux, Ux)

= 2(21/2- l)(x, x) >0. It follows that E and F do not have the greatest

lower bound 0 in 9JÎ and the proof is complete.

Theorem 12 in conjunction with Corollary 11 single out for us

among the class of all rings of operators those which are anti-lattices:

they are the factors.
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