
A   COMBINATORIAL   THEOREM   WITH   AN   APPLICATION
TO LATIN RECTANGLES

H. J. RYSER

1. Introduction. In the present paper a study is made of matrices

of r rows and n columns, composed entirely of zeros and ones, with

exactly k ones in each row. The problem considered is that of adjoin-

ing n — r rows of zeros and ones to obtain a square matrix with ex-

actly k ones in each row and in each column. In §2 it is shown that

the obvious necessary conditions for the adjunction oi n — r rows are

also sufficient. The theorem of §2 has an immediate application to the

study of latin squares, and yields in §3 a generalization of the basic

existence theorem of Marshall Hall [2].1

2. A combinatorial theorem.

Theorem 1. Let A be a matrix of r rows and n columns, composed

entirely of zeros and ones, where 1 %r <«. Let there be exactly k ones in

each row, and let N(i) denote the number of ones in the ith column of A.

If, for each ¿=1,2, • • • , «,

•}-(»- r) g N(i) = k,

then n — r rows of zeros and ones may be adjoined to A to obtain a square

matrix with exactly k ones in each row and in each column.

The proof is by mathematical induction. Let / denote the number

of columns of A with N(i)<k. Then n—t denotes the number of

columns of A  with  N(i)=k,  and consequently kr = N(l) + • • •

+ N(n)^(n-t)k + (k-(n-r))t. Thus k(r-n) "gf(r-«), whence t=k.

Next let p denote the number of columns of A with N(i)=k

— (n — r). Then n — p denotes the number of columns with N(i)

>k-(n-r). Consequently kr = N(l) + • • • +N(n)gp(k-(n-r))

-\-(n — p)k, whence k(r — n) gp(r — n) and p — k.

We now adjoin toi a row consisting of k ones and n — k zeros.

Since t = k, there are at least k positions where ones may be inserted

so that the resulting (r + l)-rowed matrix will have at most k ones in

each column. Moreover, since pgk, the ones may be inserted in all

of those columns with N(i)=k—(n — r). In the resulting (r + 1)-

rowed matrix, let M(i) denote the number of ones in the ith column.

Presented to the Society, November 25, 1950; received by the editors September

16, 1950.
1 Numbers in brackets refer to the references at the end of the paper

550



A COMBINATORIAL THEOREM 551

Because of the structure of the adjoined row, it is clear that

k - (» - (r + 1)) á M (i) = k.

The process may be continued inductively, and the resulting square

matrix possesses k ones in each row and column.

A rectangular matrix L composed of zeros and ones is called a

permutation matrix provided that it satisfies the equation LLT = I,

where LT is the transpose of L and 7 is the identity matrix. Let A be

a square matrix of zeros and ones, with exactly k ones in each row

and in each column. A classical theorem of König asserts that

A =L1 + L2+ ■■■ +Lk,

where the Li are permutation matrices [S]. Actually König's theorem

is a special case of P. Hall's theorem on the distinct representatives

of subsets [4]. The latter theorem has been the subject of the recent

investigations of Everett and Whaples [l], and Marshall Hall [3].

Corollary. For the matrix A of Theorem I, A =Li+L2+ ■ • • +Lk,

where the Li are permutation matrices.

The corollary follows immediately upon and application of Theo-

rem 1 and König's theorem.

3. The application to latin rectangles. A latin rectangle of order

r by s based upon the integers 1, 2, • • -, n is defined as an array of

r rows and s columns formed from the integers 1,2, • • • , n in such

a way that the integers in each row and in each column are distinct.

The latin rectangle is said to be extendible to an « by m latin square

provided that it is possible to adjoin n — s columns and n — r rows in

such a way that the resulting array is an n by n latin square. By

utilizing the theory of distinct representatives of subsets, Marshall

Hall has shown that every r by n latin rectangle may be extended to

an n by n latin square [2].

Theorem 2. Let T bean r by s latin rectangle based upon the integers

1,2, • • • , n. Let N(i) denote the number of times that the integer i oc-

curs in T. A necessary and sufficient condition in order that T may be

extended to annby n latin square is that for each i= 1, 2, • • ■ , n,

N(i) = r + 5 — ».

Let Ti denote the set of 5 integers formed from the ith row of T.

Let Si denote the set of the k = n — s integers among 1, 2, • • • , »

which are not in Ti, and let M(i) denote the number of times that

the integer i occurs among the sets Si, S2, ■ ■ • , S,.
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Now if T is extendible to a latin square, then the integer i cannot

occur among the sets Si, S2, ■ ■ ■ , Sr more than k=n — s times.

Hence M(i)^n — s. But N(i) + M(i) = r, whence N(i)^r+s-n. Thus

the condition of the theorem is a necessary one.

To prove the sufficiency we form from the sets 5¿ a matrix A of

order r by », composed of zeros and ones. Let Si be composed of the

integers i\, i2, ■ ■ ■ , ik. In the ith. row of A insert ones in columns

H, ii, • • ' i ik, and zeros elsewhere in this row. The matrix A has then

exactly k ones in each row, and M(i) is now the sum of the ith column

of A. By hypothesis N(i)=r — M(i)^r+s — n, so that for i

= 1,2, • • -, », M (i) ¿k. Since P is an r by 5 latin rectangle, N(i) Ss,

whence k — (n — r)^M(i). By the corollary of Theorem 1, it now fol-

lows that A—Li+L2 + • • • +7,4, where the Lf are rectangular

permutation matrices. Let the one in row j of Lt occur in column t¡.

From the integers t¡ form the k sets (h, t2, ■ • ■ , tr), each containing

r distinct integers. These sets may now be adjoined to T to obtain

a latin rectangle of order r by ». The latter may then be extended to

an » by » latin square as in [2]. This does not differ essentially from

completing the transposed » by r latin rectangle to an » by » latin

square by the method already indicated, the condition on N(i) being

then trivially satisfied.
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